Mechanistic Understanding of Oxidation of Tin-based Perovskite Solar Cells and Mitigation Strategies
Zhihao Zhang
College of Materials Science and Engineering &, Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065 China
Contribution: Conceptualization (lead), Data curation (lead), Investigation (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorYuanfang Huang
College of Materials Science and Engineering &, Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065 China
Contribution: Data curation (supporting), Formal analysis (supporting), Writing - review & editing (supporting)
Search for more papers by this authorJialun Jin
College of Materials Science and Engineering &, Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065 China
Contribution: Data curation (supporting), Formal analysis (supporting), Writing - review & editing (supporting)
Search for more papers by this authorYiting Jiang
College of Materials Science and Engineering &, Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065 China
Contribution: Data curation (supporting), Formal analysis (supporting), Writing - review & editing (supporting)
Search for more papers by this authorYuliang Xu
College of Materials Science and Engineering &, Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065 China
Contribution: Data curation (supporting), Formal analysis (supporting), Writing - review & editing (supporting)
Search for more papers by this authorJingwei Zhu
College of Materials Science and Engineering &, Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065 China
Contribution: Data curation (supporting), Formal analysis (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Dewei Zhao
College of Materials Science and Engineering &, Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065 China
Contribution: Conceptualization (lead), Formal analysis (lead), Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorZhihao Zhang
College of Materials Science and Engineering &, Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065 China
Contribution: Conceptualization (lead), Data curation (lead), Investigation (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorYuanfang Huang
College of Materials Science and Engineering &, Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065 China
Contribution: Data curation (supporting), Formal analysis (supporting), Writing - review & editing (supporting)
Search for more papers by this authorJialun Jin
College of Materials Science and Engineering &, Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065 China
Contribution: Data curation (supporting), Formal analysis (supporting), Writing - review & editing (supporting)
Search for more papers by this authorYiting Jiang
College of Materials Science and Engineering &, Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065 China
Contribution: Data curation (supporting), Formal analysis (supporting), Writing - review & editing (supporting)
Search for more papers by this authorYuliang Xu
College of Materials Science and Engineering &, Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065 China
Contribution: Data curation (supporting), Formal analysis (supporting), Writing - review & editing (supporting)
Search for more papers by this authorJingwei Zhu
College of Materials Science and Engineering &, Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065 China
Contribution: Data curation (supporting), Formal analysis (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Dewei Zhao
College of Materials Science and Engineering &, Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065 China
Contribution: Conceptualization (lead), Formal analysis (lead), Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorGraphical Abstract
The facile oxidation of Sn-based perovskites is the most crucial issue hindering the development of Sn-based perovskite solar cells. This review concentrates on the oxidation of Sn-based perovskites from the chemical mechanism, detrimental effects at material- and device-level, and especially intrinsic causes/extrinsic causes to provide clear guidelines to accurately suppress the oxidation.
Abstract
Tin (Sn)-based perovskites as the most promising absorber materials for lead-free perovskite solar cells (PSCs) have achieved the record efficiency of over 14 %. Although suppressing the oxidation of Sn-based perovskites is a frequently concerned topic for Sn-based PSCs, many studies have given vague explanations and the mechanisms are still under debate. This is in principal due to the lack of an in-depth understanding of various and complex intrinsic and extrinsic factors causing the oxidation process. In this context, we critically review the chemical mechanism of facile oxidation of Sn-based perovskites and differentiate its detrimental effects at material- and device-level. More importantly, we classify and introduce the intrinsic factors (raw materials and solvent of perovskite precursors) and extrinsic factors (exposure to neutral oxygen and superoxide) causing the oxidation with their corresponding anti-oxidation improvement methods. The presented comprehensive understanding and prospect of the oxidation provide insightful guidance for suppressing the oxidation in Sn-based PSCs “from the beginning to the end”.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1L. Xiao, T. An, C. Deng, X. Xu, H. Sun, Energy Environ. Sci. 2023, 16, 2120–2132.
- 2C. Wang, Y. Zhao, T. Ma, Y. An, R. He, J. Zhu, C. Chen, S. Ren, F. Fu, D. Zhao, X. Li, Nat. Energy 2022, 7, 744–753.
- 3D. Zhao, C. Chen, C. Wang, M. M. Junda, Z. Song, C. R. Grice, Y. Yu, C. Li, B. Subedi, N. J. Podraza, X. Zhao, G. Fang, R. Xiong, K. Zhu, Y. Yan, Nat. Energy 2018, 3, 1093–1100.
- 4R. He, W. Wang, Z. Yi, F. Lang, C. Chen, J. Luo, J. Zhu, J. Thiesbrummel, S. Shah, K. Wei, Y. Luo, C. Wang, H. Lai, H. Huang, J. Zhou, B. Zou, X. Yin, S. Ren, X. Hao, L. Wu, J. Zhang, J. Zhang, M. Stolterfoht, F. Fu, W. Tang, D. Zhao, Nature 2023, 618, 80–86.
- 5J. Zhu, Y. Luo, R. He, C. Chen, Y. Wang, J. Luo, Z. Yi, J. Thiesbrummel, C. Wang, F. Lang, H. Lai, Y. Xu, J. Wang, Z. Zhang, W. Liang, G. Cui, S. Ren, X. Hao, H. Huang, Y. Wang, F. Yao, Q. Lin, L. Wu, J. Zhang, M. Stolterfoht, F. Fu, D. Zhao, Nat. Energy 2023, 8, 714–724.
- 6J. Urieta-Mora, I. García-Benito, A. Molina-Ontoria, N. Martín, Chem. Soc. Rev. 2018, 47, 8541–8571.
- 7B. Yang, D. Bogachuk, J. Suo, L. Wagner, H. Kim, J. Lim, A. Hinsch, G. Boschloo, M. K. Nazeeruddin, A. Hagfeldt, Chem. Soc. Rev. 2022, 51, 7509–7530.
- 8Z. Zhang, Z. Li, L. Deng, Y. Gao, C. Wang, J. Xu, T. Li, P. Gao, ACS Appl. Mater. Interfaces 2022, 14, 4378–4388.
- 9Z. Li, B. Zhang, Z. Zhang, J. Bünzli, A. Rashid, Y. Noh, P. Gao, Mater. Sci. Eng. R 2023, 152, 100710.
- 10J. Li, H. L. Cao, W. Bin Jiao, Q. Wang, M. Wei, I. Cantone, J. Lü, A. Abate, Nat. Commun. 2020, 11, 310.
- 11X. Jiang, Z. Zang, Y. Zhou, H. Li, Q. Wei, Z. Ning, Acc. Mater. Res. 2021, 2, 210–219.
- 12Z. Wan, H. Lai, S. Ren, R. He, Y. Jiang, J. Luo, Q. Chen, X. Hao, Y. Wang, J. Zhang, L. Wu, D. Zhao, J. Energy Chem. 2021, 57, 147–168.
- 13H. Liu, Z. Zhang, W. Zuo, R. Roy, M. Li, M. M. Byranvand, M. Saliba, Adv. Energy Mater. 2023, 13, 2202209.
- 14Z. Zhang, Z. Li, L. Meng, S. Y. Lien, P. Gao, Adv. Funct. Mater. 2020, 30, 2001904.
- 15C. Wang, Z. Song, C. Li, D. Zhao, Y. Yan, Adv. Funct. Mater. 2019, 29, 1808801.
- 16R. He, S. Ren, C. Chen, Z. Yi, Y. Luo, H. Lai, W. Wang, G. Zeng, X. Hao, Y. Wang, J. Zhang, C. Wang, L. Wu, F. Fu, D. Zhao, Energy Environ. Sci. 2021, 14, 5723–5759.
- 17X. Jiang, H. Li, Q. Zhou, Q. Wei, M. Wei, L. Jiang, Z. Wang, Z. Peng, F. Wang, Z. Zang, K. Xu, Y. Hou, S. Teale, W. Zhou, R. Si, X. Gao, E. H. Sargent, Z. Ning, J. Am. Chem. Soc. 2021, 143, 10970–10976.
- 18L. Lanzetta, T. Webb, J. M. Marin-Beloqui, T. J. Macdonald, S. A. Haque, Angew. Chem. Int. Ed. 2023, 62, e202213966.
- 19L. Wang, M. Chen, S. Yang, N. Uezono, Q. Miao, G. Kapil, A. K. Baranwal, Y. Sanehira, D. Wang, D. Liu, T. Ma, K. Ozawa, T. Sakurai, Z. Zhang, Q. Shen, S. Hayase, ACS Energy Lett. 2022, 7, 3703–3708.
- 20B. Li, B. Chang, L. Pan, Z. Li, L. Fu, Z. He, L. Yin, ACS Energy Lett. 2020, 5, 3752–3772.
- 21T. Wang, Q. Tai, X. Guo, J. Cao, C. K. Liu, N. Wang, D. Shen, Y. Zhu, C. S. Lee, F. Yan, ACS Energy Lett. 2020, 5, 1741–1749.
- 22B. Chang, B. Li, Z. Wang, H. Li, L. Wang, L. Pan, Z. Li, L. Yin, Adv. Funct. Mater. 2022, 32, 2107710.
- 23Y. Huang, Y. Jiang, S. Zou, Z. Zhang, J. Jin, R. He, W. Hu, S. Ren, D. Zhao, ACS Appl. Mater. Interfaces 2023, 15, 15775–15784.
- 24W. Ke, C. C. Stoumpos, M. G. Kanatzidis, Adv. Mater. 2019, 31, 1803230.
- 25M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, N. Mathews, Adv. Mater. 2014, 26, 7122–7127.
- 26J. Pascual, D. Di Girolamo, M. A. Flatken, M. H. Aldamasy, G. Li, M. Li, A. Abate, Chem. Eur. J. 2022, 28, e202103919.
- 27M. I. Saidaminov, I. Spanopoulos, J. Abed, W. Ke, J. Wicks, M. G. Kanatzidis, E. H. Sargent, ACS Energy Lett. 2020, 5, 1153–1155.
- 28Z. Zhang, L. Qiao, K. Meng, R. Long, G. Chen, P. Gao, Chem. Soc. Rev. 2023, 52, 163–195.
- 29Z. Zhang, X. Tian, C. Wang, J. Jin, Y. Jiang, Q. Zhou, J. Zhu, J. Xu, R. He, Y. Huang, S. Ren, C. Chen, P. Gao, R. Long, D. Zhao, Energy Environ. Sci. 2022, 15, 5274–5283.
- 30Y. Zhang, J. Zhou, X. Ma, J. Dong, J. Wang, D. Han, Z. Zang, M. G. Ju, Q. Zhang, N. Wang, Solar RRL 2022, 7, 2200997.
- 31M. Awais, R. L. Kirsch, V. Yeddu, M. I. Saidaminov, ACS Materials Lett. 2021, 3, 299–307.
- 32S. Shao, J. Liu, G. Portale, H. H. Fang, G. R. Blake, G. H. ten Brink, L. J. A. Koster, M. A. Loi, Adv. Energy Mater. 2018, 8, 1702019.
- 33J. Cao, Q. Tai, P. You, G. Tang, T. Wang, N. Wang, F. Yan, J. Mater. Chem. A 2019, 7, 26580–26585.
- 34Q. Tai, X. Guo, G. Tang, P. You, T. W. Ng, D. Shen, J. Cao, C. K. Liu, N. Wang, Y. Zhu, C. S. Lee, F. Yan, Angew. Chem. Int. Ed. 2019, 58, 806–810.
- 35M. E. Kayesh, K. Matsuishi, R. Kaneko, S. Kazaoui, J. J. Lee, T. Noda, A. Islam, ACS Energy Lett. 2019, 4, 278–284.
- 36Z. Lin, C. Liu, G. Liu, J. Yang, X. Duan, L. Tan, Y. Chen, Chem. Commun. 2020, 56, 4007–4010.
- 37T. Nakamura, S. Yakumaru, M. A. Truong, K. Kim, J. Liu, S. Hu, K. Otsuka, R. Hashimoto, R. Murdey, T. Sasamori, H. Do Kim, H. Ohkita, T. Handa, Y. Kanemitsu, A. Wakamiya, Nat. Commun. 2020, 11, 3008.
- 38W. G. Choi, C. G. Park, Y. Kim, T. Moon, ACS Energy Lett. 2020, 5, 3461–3467.
- 39E. Jokar, P. Y. Cheng, C. Y. Lin, S. Narra, S. Shahbazi, E. Wei-Guang Diau, ACS Energy Lett. 2021, 6, 485–492.
- 40H. Dong, P. Li, J. Dai, F. Yuan, R. Xu, X. Cao, H. Li, X. Hou, J. Li, Z. Wu, Org. Electron. 2021, 96, 106198.
- 41M. Sun, M. Ma, Y. Guo, S. Yuan, H. Xiong, Z. Tan, W. Li, J. Fan, Z. Ning, Solar RRL 2022, 6, 2200672.
- 42Z. Zhu, X. Jiang, D. Yu, N. Yu, Z. Ning, Q. Mi, ACS Energy Lett. 2022, 7, 2079–2083.
- 43S. Tao, I. Schmidt, G. Brocks, J. Jiang, I. Tranca, K. Meerholz, S. Olthof, Nat. Commun. 2019, 10, 2560.
- 44D. Ricciarelli, D. Meggiolaro, F. Ambrosio, F. De Angelis, ACS Energy Lett. 2020, 5, 2787–2795.
- 45Y. Jiang, Z. Lu, S. Zou, H. Lai, Z. Zhang, J. Luo, Y. Huang, R. He, J. Jin, Z. Yi, Y. Luo, W. Wang, C. Wang, X. Hao, C. Chen, X. Wang, Y. Wang, S. Ren, T. Shi, F. Fu, D. Zhao, Nano Energy 2022, 103, 107818.
- 46D. Meggiolaro, D. Ricciarelli, A. A. Alasmari, F. A. S. Alasmary, F. De Angelis, J. Phys. Chem. Lett. 2020, 11, 3546–3556.
- 47R. L. Milot, M. T. Klug, C. L. Davies, Z. Wang, H. Kraus, H. J. Snaith, M. B. Johnston, L. M. Herz, Adv. Mater. 2018, 30, 1804506.
- 48K. Dey, B. Roose, S. D. Stranks, Adv. Mater. 2021, 33, 2102300.
- 49T. Shi, H. S. Zhang, W. Meng, Q. Teng, M. Liu, X. Yang, Y. Yan, H. L. Yip, Y. J. Zhao, J. Mater. Chem. A 2017, 5, 15124–15129.
- 50T. Mahmoudia, W.-Y. Rhob, M. Kohan, Y. H. Im, S. Mathur, Y.-B. Hahn, Nano Energy 2021, 90, 106495.
- 51Z. Ni, C. Bao, Y. Liu, Q. Jiang, W. Q. Wu, S. Chen, X. Dai, B. Chen, B. Hartweg, Z. Yu, Z. Holman, J. Huang, Science 2020, 367, 1352–1358.
- 52L. Liang, Q. Xiong, Z. Zhang, Y. Yu, P. Gao, Electrochim. Acta 2022, 413, 140172.
- 53L. Ma, F. Hao, C. C. Stoumpos, B. T. Phelan, M. R. Wasielewski, M. G. Kanatzidis, J. Am. Chem. Soc. 2016, 138, 14750–14755.
- 54C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, Inorg. Chem. 2013, 52, 9019–9038.
- 55T. Wang, F. Yan, Chem. Asian J. 2020, 15, 1524–1535.
- 56F. Gu, S. Ye, Z. Zhao, H. Rao, Z. Liu, Z. Bian, C. Huang, Solar RRL 2018, 2, 1800136.
- 57R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang, M. Wei, M. I. Saidaminov, Y. Gao, J. Xu, M. Xiao, A. Li, J. Zhu, E. H. Sargent, H. Tan, Nat. Energy 2019, 4, 864–873.
- 58M. E. Kayesh, T. H. Chowdhury, K. Matsuishi, R. Kaneko, S. Kazaoui, J. J. Lee, T. Noda, A. Islam, ACS Energy Lett. 2018, 3, 1584–1589.
- 59E. Jokar, H. S. Chuang, C. H. Kuan, H. P. Wu, C. H. Hou, J. J. Shyue, E. Wei-Guang Diau, J. Phys. Chem. Lett. 2021, 12, 10106–10111.
- 60F. Li, C. Zhang, J. H. Huang, H. Fan, H. Wang, P. Wang, C. Zhan, C. M. Liu, X. Li, L. M. Yang, Y. Song, K. J. Jiang, Angew. Chem. Int. Ed. 2019, 58, 6688–6692.
- 61S. Tsarev, A. G. Boldyreva, S. Y. Luchkin, M. Elshobaki, M. I. Afanasov, K. J. Stevenson, P. A. Troshin, J. Mater. Chem. A 2018, 6, 21389–21395.
- 62K. Xiao, R. Lin, Q. Han, Y. Hou, Z. Qin, H. T. Nguyen, J. Wen, M. Wei, V. Yeddu, M. I. Saidaminov, Y. Gao, X. Luo, Y. Wang, H. Gao, C. Zhang, J. Xu, J. Zhu, E. H. Sargent, H. Tan, Nat. Energy 2020, 5, 870–880.
- 63T. M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W. L. Leong, P. P. Boix, A. C. Grimsdale, S. G. Mhaisalkar, N. Mathews, J. Mater. Chem. A 2015, 3, 14996–15000.
- 64S. Zou, S. Ren, Y. Jiang, Y. Huang, W. Wang, C. Wang, C. Chen, X. Hao, L. Wu, J. Zhang, D. Zhao, Energy Environ. Mater. 2023, 6, e12465.
- 65D. Zhao, Y. Yu, C. Wang, W. Liao, N. Shrestha, C. R. Grice, A. J. Cimaroli, L. Guan, R. J. Ellingson, K. Zhu, X. Zhao, R. G. Xiong, Y. Yan, Nat. Energy 2017, 2, 17018.
- 66Q. Chen, J. Luo, R. He, H. Lai, S. Ren, Y. Jiang, Z. Wan, W. Wang, X. Hao, Y. Wang, J. Zhang, I. Constantinou, C. Wang, L. Wu, F. Fu, D. Zhao, Adv. Energy Mater. 2021, 11, 2101045.
- 67T. J. Macdonald, L. Lanzetta, X. Liang, D. Ding, S. A. Haque, Adv. Mater. 2023, 35, 2206684.
- 68W. Liao, D. Zhao, Y. Yu, C. R. Grice, C. Wang, A. J. Cimaroli, P. Schulz, W. Meng, K. Zhu, R. G. Xiong, Y. Yan, Adv. Mater. 2016, 28, 9333–9340.
- 69F. Hao, C. C. Stoumpos, P. Guo, N. Zhou, T. J. Marks, R. P. H. Chang, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 11445–11452.
- 70J. Sanchez-Diaz, R. S. Sánchez, S. Masi, M. Kreĉmarová, A. O. Alvarez, E. M. Barea, J. Rodriguez-Romero, V. S. Chirvony, J. F. Sánchez-Royo, J. P. Martinez-Pastor, I. Mora-Seró, Joule 2022, 6, 861–883.
- 71J. Zhou, M. Hao, Y. Zhang, X. Ma, J. Dong, F. Lu, J. Wang, N. Wang, Y. Zhou, Matter 2022, 5, 683–693.
- 72C. Wang, Y. Zhang, F. Gu, Z. Zhao, H. Li, H. Jiang, Z. Bian, Z. Liu, Matter 2021, 4, 709–721.
- 73M. V. Gavrilin, G. V. Sen'chukova, E. V. Kompantseva, Pharm. Chem. J. 2000, 34, 490–493.
- 74D. Di Girolamo, J. Pascual, M. H. Aldamasy, Z. Iqbal, G. Li, E. Radicchi, M. Li, S. H. Turren-Cruz, G. Nasti, A. Dallmann, F. De Angelis, A. Abate, ACS Energy Lett. 2021, 6, 959–968.
- 75G. Nasti, M. H. Aldamasy, M. A. Flatken, P. Musto, P. Matczak, A. Dallmann, A. Hoell, A. Musiienko, H. Hempel, E. Aktas, D. Di Girolamo, J. Pascual, G. Li, M. Li, L. V. Mercaldo, P. D. Veneri, A. Abate, ACS Energy Lett. 2022, 7, 3197–3203.
- 76L. Qiao, W.-H. Fang, O. V. Prezhdo, R. Long, J. Am. Chem. Soc. 2022, 144, 5543–5551.
- 77H. Yao, F. Zhou, Z. Li, Z. Ci, L. Ding, Z. Jin, Adv. Sci. 2020, 7, 1903540.
- 78Q. Wei, Y. Ke, Z. Ning, Energy Environ. Mater. 2020, 3, 541–547.
- 79T. Leijtens, R. Prasanna, A. Gold-Parker, M. F. Toney, M. D. McGehee, ACS Energy Lett. 2017, 2, 2159–2165.
- 80J. Cao, F. Yan, Energy Environ. Sci. 2021, 14, 1286–1325.
- 81L. Lanzetta, T. Webb, N. Zibouche, X. Liang, D. Ding, G. Min, R. J. E. Westbrook, B. Gaggio, T. J. Macdonald, M. S. Islam, S. A. Haque, Nat. Commun. 2021, 12, 2853.
- 82W. Rahim, A. Cheng, C. Lyu, T. Shi, Z. Wang, D. O. Scanlon, R. G. Palgrave, Chem. Mater. 2020, 32, 9573–9583.
- 83G. Xie, L. Xu, L. Sun, Y. Xiong, P. Wu, B. Hu, J. Mater. Chem. A 2019, 7, 5779–5793.
- 84W. Ke, I. Spanopoulos, Q. Tu, I. Hadar, X. Li, G. S. Shekhawat, V. P. Dravid, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 8627–8637.
- 85W. Ke, C. C. Stoumpos, M. Zhu, L. Mao, I. Spanopoulos, J. Liu, O. Y. Kontsevoi, M. Chen, D. Sarma, Y. Zhang, M. R. Wasielewski, M. G. Kanatzidis, Sci. Adv. 2017, 3, 1701293.
- 86P. Gao, A. R. Bin Mohd Yusoff, M. K. Nazeeruddin, Nat. Commun. 2018, 9, 5028.
- 87M. Shao, T. Bie, L. Yang, Y. Gao, X. Jin, F. He, N. Zheng, Y. Yu, X. Zhang, Adv. Mater. 2022, 34, 2107211 .
- 88M. Liao, B. Bin Yu, Z. Jin, W. Chen, Y. Zhu, X. Zhang, W. Yao, T. Duan, I. Djerdj, Z. He, ChemSusChem 2019, 12, 5007–5014.
- 89Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Quintero-Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, Z. Ning, J. Am. Chem. Soc. 2017, 139, 6693–6699.
- 90F. Wang, X. Jiang, H. Chen, Y. Shang, H. Liu, J. Wei, W. Zhou, H. He, W. Liu, Z. Ning, Joule 2018, 2, 2732–2743.
- 91N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M. Saiful Islam, S. A. Haque, Nat. Commun. 2017, 8, 15218.
- 92M. I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan, G. Long, F. Tan, A. Johnston, Y. Zhao, O. Voznyy, E. H. Sargent, Nat. Energy 2018, 3, 648–654.
- 93C. T. Lin, F. De Rossi, J. Kim, J. Baker, J. Ngiam, B. Xu, S. Pont, N. Aristidou, S. A. Haque, T. Watson, M. A. McLachlan, J. R. Durrant, J. Mater. Chem. A 2019, 7, 3006–3011.
- 94J. He, Y. Zhu, W. Fang, R. Long, J. Phys. Chem. Lett. 2021, 12, 1664–1670.
- 95Z. Zhang, Y. Gao, Z. Li, L. Qiao, Q. Xiong, L. Deng, Z. Zhang, R. Long, Q. Zhou, Y. Du, Z. Lan, Y. Zhao, C. Li, K. Müllen, P. Gao, Adv. Mater. 2021, 33, 2008405.
- 96D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J. R. Durrant, S. A. Haque, Energy Environ. Sci. 2016, 9, 1655–1660.
- 97N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, S. A. Haque, Angew. Chem. Int. Ed. 2015, 54, 8208–8212.
- 98Q. Zhou, Y. Gao, C. Cai, Z. Zhang, J. Xu, Z. Yuan, P. Gao, Angew. Chem. Int. Ed. 2021, 60, 8303–8312.
- 99Y. Su, J. Yang, H. Rao, Y. Zhong, W. Sheng, L. Tan, Y. Chen, Energy Environ. Sci. 2023, 16, 2177–2186.
- 100Z. Zhang, Y. Huang, C. Wang, Y. Jiang, J. Jin, J. Xu, Z. Li, Z. Su, Q. Zhou, J. Zhu, R. He, D. Hou, H. Lai, S. Ren, C. Chen, X. Gao, T. Shi, W. Hu, F. Fu, P. Gao, D. Zhao, Energy Environ. Sci. 2023, Advance Article, DOI: 10.1039/D3EE00601H.