Polyimide Compounds For Post-Lithium Energy Storage Applications
Corresponding Author
Amey Nimkar
Department of Chemistry and BINA—, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorGil Bergman
Department of Chemistry and BINA—, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorElad Ballas
Department of Chemistry and BINA—, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorNophar Tubul
Department of Chemistry and BINA—, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorNoam Levi
Department of Chemistry and BINA—, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorFyodor Malchik
Center of Physical-Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, Almaty, 050012 Kazakhstan
Search for more papers by this authorIdan Kukurayeve
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
Search for more papers by this authorMunseok S. Chae
Department of Nanotechnology Engineering, Pukyong National University, Busan, 48547 Republic of Korea
Search for more papers by this authorDaniel Sharon
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
Search for more papers by this authorMikhael Levi
Department of Chemistry and BINA—, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorCorresponding Author
Netanel Shpigel
Department of Chemical Sciences, Ariel University, Kiryat Hamada 3, 44837 Ariel, Israel
Search for more papers by this authorGuoxiu Wang
Center for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007 Australia
Search for more papers by this authorCorresponding Author
Doron Aurbach
Department of Chemistry and BINA—, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorCorresponding Author
Amey Nimkar
Department of Chemistry and BINA—, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorGil Bergman
Department of Chemistry and BINA—, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorElad Ballas
Department of Chemistry and BINA—, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorNophar Tubul
Department of Chemistry and BINA—, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorNoam Levi
Department of Chemistry and BINA—, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorFyodor Malchik
Center of Physical-Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, Almaty, 050012 Kazakhstan
Search for more papers by this authorIdan Kukurayeve
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
Search for more papers by this authorMunseok S. Chae
Department of Nanotechnology Engineering, Pukyong National University, Busan, 48547 Republic of Korea
Search for more papers by this authorDaniel Sharon
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
Search for more papers by this authorMikhael Levi
Department of Chemistry and BINA—, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorCorresponding Author
Netanel Shpigel
Department of Chemical Sciences, Ariel University, Kiryat Hamada 3, 44837 Ariel, Israel
Search for more papers by this authorGuoxiu Wang
Center for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007 Australia
Search for more papers by this authorCorresponding Author
Doron Aurbach
Department of Chemistry and BINA—, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorGraphical Abstract
Polyimides have proven to be highly versatile in nearly all areas of rechargeable battery applications, spanning from active electrode materials to separator coatings. This review presents a summary of significant research conducted over the past 15 years, showcasing their potential to pave the way for a new era of effective utilization of these polymers in next-generation batteries.
Abstract
The exploration of cathode and anode materials that enable reversible storage of mono and multivalent cations has driven extensive research on organic compounds. In this regard, polyimide (PI)-based electrodes have emerged as a promising avenue for the development of post-lithium energy storage systems. This review article provides a comprehensive summary of the syntheses, characterizations, and applications of PI compounds as electrode materials capable of hosting a wide range of cations. Furthermore, the review also delves into the advancements in PI based solid state batteries, PI-based separators, current collectors, and their effectiveness as polymeric binders. By highlighting the key findings in these areas, this review aims at contributing to the understanding and advancement of PI-based structures paving the way for the next generation of energy storage systems.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1T. Liu, Y. Zhang, Z. Jiang, X. Zeng, J. Ji, Z. Li, X. Gao, M. Sun, Z. Lin, M. Ling, J. Zheng, C. Liang, Energy Environ. Sci. 2019, 12, 1512–1533.
- 2Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, Nano-Micro Lett. 2022, 14, 1–49.
- 3A. Nimkar, M. S. Chae, S. Wee, G. Bergman, B. Gavriel, M. Turgeman, F. Malchik, M. D. Levi, D. Sharon, M. R. Lukatskaya, N. Shpigel, D. Mandler, ACS Energy Lett. 2022, 7, 4161–4167.
- 4S. Bi, Y. Zhang, S. Deng, Z. Tie, Z. Niu, Angew. Chem. Int. Ed. 2022, 61, e202200809.
- 5C. Wu, H. Tan, W. Huang, C. Liu, W. Wei, L. Chen, Q. Yan, Mater. Today Energy 2021, 19, 100595.
- 6J. Hu, Y. Hong, M. Guo, Y. Hu, W. Tang, S. Xu, S. Jia, B. Wei, S. Liu, C. Fan, Q. Zhang, Energy Storage Mater. 2023, 56, 267–299.
- 7J. Kim, Y. Kim, J. Yoo, G. Kwon, Y. Ko, K. Kang, Nat. Rev. Mater. 2022, 8, 54–70.
- 8M. E. Bhosale, S. Chae, J. M. Kim, J. Y. Choi, J. Mater. Chem. A 2018, 6, 19885–19911.
- 9Z. Song, H. Zhan, Y. Zhou, Angew. Chem. Int. Ed. 2010, 49, 8444–8448.
- 10A. Viehbeck, M. J. Goldberg, C. A. Kovac, J. Electrochem. Soc. 1990, 137, 1460–1466.
- 11S. Mazur, P. S. Lugg, C. Yarnitzky, J. Electrochem. Soc. 1987, 134, 346–353.
- 12L. W. McKeen, Film Properties of Plastics and Elastomers, Elsevier, Amsterdam, 2017, pp. 147–185.
- 13M. Zhang, L. Wang, H. Xu, Y. Song, X. He, Nano-Micro Lett. 2023, 15, 135.
- 14V. L. Bell, B. L. Stump, H. Gager, J. Polym. Sci. Polym. Chem. Ed. 1976, 14, 2275–2291.
- 15N. Denko, J. Polym. Sci. Part B 2000, 38, 2525–2536.
- 16A. A. Kuznetsov, High Perform. Polym. 2000, 12, 445–460.
- 17H.-G. Wang, S. Yuan, D.-L. Ma, X.-L. Huang, F.-L. Meng, X.-B. Zhang, H.-G. Wang, S. Yuan, D.-L. Ma, X.-L. Huang, F.-L. X. Meng, X.-B. Zhang, F.-L. Meng, Adv. Energy Mater. 2014, 4, 1301651.
- 18H. P. Wu, Q. Yang, Q. H. Meng, A. Ahmad, M. Zhang, L. Y. Zhu, Y. G. Liu, Z. X. Wei, J. Mater. Chem. A 2016, 4, 2115–2121.
- 19J. He, Y. Liao, Q. Hu, Z. Zeng, L. Yi, Y. Wang, H. Lu, M. Pan, J. Power Sources 2020, 451, 227792.
- 20K. B. Labasan, H. J. Lin, F. Baskoro, J. J. H. Togonon, H. Q. Wong, C. W. Chang, S. D. Arco, H. J. Yen, ACS Appl. Mater. Interfaces 2021, 13, 17467–17477.
- 21R. R. Kapaev, A. G. Scherbakov, A. F. Shestakov, K. J. Stevenson, P. A. Troshin, ACS Appl. Energ. Mater. 2021, 4, 4465–4472.
- 22A. Nimkar, F. Malchick, B. Gavriel, M. Turgeman, G. Bergman, T. Fan, S. Bublil, R. Cohen, M. Weitman, N. Shpigel, M. D. Levi, D. Aurbach, ACS Energy Lett. 2021, 6, 2638–2644.
- 23A. Nimkar, B. Gavriel, G. Bergman, M. Turgeman, T. Fan, N. Shpigel, D. Aurbach, ACS Sustainable Chem. Eng. 2023, 11, 1428–1433.
- 24X. Dong, H. Yu, Y. Ma, J. L. Bao, D. G. Truhlar, Y. Wang, Y. Xia, Chem. Eur. J. 2017, 23, 2560–2565.
- 25W. Deng, Y. Shen, J. Qian, H. Yang, Chem. Commun. 2015, 51, 5097–5099.
- 26M. Zhang, H. Niu, D. Wu, Macromol. Rapid Commun. 2018, 39, 1800141.
- 27F. Y. Tsai, T. N. Blanton, D. R. Harding, S. H. Chen, J. Appl. Phys. 2003, 93, 3760–3764.
- 28Y. Liu, X.-Y. Zhao, Y.-G. Sun, W.-Z. Li, X.-S. Zhang, J. Luan, Resour. Chem. Mater. 2023, 2, 49–62.
- 29D.-J. Liaw, P.-N. Hsu, W.-H. Chen, S.-L. Lin, Macromolecules 2002, 35, 4669–4676.
- 30D.-J. Liaw, K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai, C.-S. Ha, Prog. Polym. Sci. 2012, 37, 907–974.
- 31V. E. Ogbonna, P. I. Popoola, O. M. Popoola, S. O. Adeosun, J. Thermoplast. Compos. Mater. 2023, 36, 836–865.
- 32L. Chen, J. L. Bao, X. Dong, D. G. Truhlar, Y. Wang, C. Wang, Y. Xia, ACS Energy Lett. 2017, 2, 1115–1121.
- 33S. Gheytani, Y. Liang, F. Wu, Y. Jing, H. Dong, K. K. Rao, X. Chi, F. Fang, Y. Yao, Adv. Sci. 2017, 4, 1700465.
- 34L. Chen, W. Li, Y. Wang, C. Wang, Y. Xia, RSC Adv. 2014, 4, 25369–25373.
- 35G. Hernández, N. Casado, R. Coste, D. Shanmukaraj, L. Rubatat, M. Armand, D. Mecerreyes, RSC Adv. 2015, 5, 17096–17103.
- 36Q. Zhao, R. R. Gaddam, D. Yang, E. Strounina, A. K. Whittaker, X. S. Zhao, Electrochim. Acta 2018, 265, 702–708.
- 37X. Gao, Y. Chen, C. Gu, J. Wen, X. Peng, J. Liu, Z. Zhang, Q. Zhang, Z. Liu, C. Wang, J. Mater. Chem. A 2020, 8, 19283–19289.
- 38M. R. Raj, N. Kim, G. Lee, Sustain. Energy Fuels 2021, 5, 175–187.
- 39Y. Hu, H. Ding, Y. Bai, Z. Liu, S. Chen, Y. Wu, X. Yu, L. Fan, B. Lu, ACS Appl. Mater. Interfaces 2019, 11, 42078–42085.
- 40X. Dong, L. Chen, J. Liu, S. Haller, Y. Wang, Y. Xia, Sci. Adv. 2016, 2, e1501038.
- 41S. Maddukuri, A. Nimkar, M. S. Chae, T. R. Penki, S. Luski, D. Aurbach, Front. Energy Res. 2021, 8, 390.
- 42G. Zhou, X. An, C. Zhou, Y. Wu, Y. E. Miao, T. Liu, Compos. Commun. 2020, 22, 100519.
- 43S. Qiu, Y. Xu, X. Li, S. K. Sandstrom, X. Wu, X. Ji, Electrochem. Commun. 2021, 122, 106880.
- 44T. Sun, H. Du, S. Zheng, Z. Tao, J. Power Sources 2021, 515, 230643.
- 45F. Wang, X. Fan, T. Gao, W. Sun, Z. Ma, C. Yang, F. Han, K. Xu, C. Wang, ACS Cent. Sci. 2017, 3, 1121–1128.
- 46F. Xu, J. Xia, W. Shi, Electrochem. Commun. 2015, 60, 117–120.
- 47C. Zhang, Y. Xu, K. He, Y. Dong, H. Zhao, L. Medenbach, Y. Wu, A. Balducci, T. Hannappel, Y. Lei, C. Zhang, Y. Xu, H. Zhao, Y. Wu, T. Hannappel, Y. Lei, K. He, Y. Dong, L. Medenbach, A. Balducci, Small 2020, 16, 2002953.
- 48Y. Liu, Q. Ru, Y. Gao, Q. An, F. Chen, Z. Shi, M. Zheng, Z. Pan, Appl. Surf. Sci. 2020, 525, 146563.
- 49Y. Zhang, Y. An, B. Yin, J. Jiang, S. Dong, H. Dou, X. Zhang, J. Mater. Chem. A 2019, 7, 11314–11320.
- 50H. Qin, Z. P. Song, H. Zhan, Y. H. Zhou, J. Power Sources 2014, 249, 367–372.
- 51W. Han, M. Li, Y. Ma, J. Yang, Electrochim. Acta 2022, 403, 139550.
- 52M. Ruby Raj, R. V. Mangalaraja, D. Contreras, K. Varaprasad, M. V. Reddy, S. Adams, ACS Appl. Energ. Mater. 2020, 3, 240–252.
- 53H. Banda, D. Damien, K. Nagarajan, M. Hariharan, M. M. Shaijumon, J. Mater. Chem. A 2015, 3, 10453–10458.
- 54H.-C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673–674.
- 55H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
- 56A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166–1170.
- 57D. Zhu, G. Xu, M. Barnes, Y. Li, C. P. Tseng, Z. Zhang, J. J. Zhang, Y. Zhu, S. Khalil, M. M. Rahman, R. Verduzco, P. M. Ajayan, Adv. Funct. Mater. 2021, 31, 2100505.
- 58R. Zhao, Z. Liang, R. Zou, Q. Xu, Joule 2018, 2, 2235–2259.
- 59H. Duan, P. Lyu, J. Liu, Y. Zhao, Y. Xu, ACS Nano 2019, 13, 24.
- 60H. Duan, K. Li, M. Xie, J. M. Chen, H. G. Zhou, X. Wu, G. H. Ning, A. I. Cooper, D. Li, J. Am. Chem. Soc. 2021, 143, 19446–19453.
- 61J. Zhou, X. Yu, J. Zhou, B. Lu, Energy Storage Mater. 2020, 31, 58–63.
- 62R. Van Der Jagt, A. Vasileiadis, H. Veldhuizen, P. Shao, X. Feng, S. Ganapathy, N. C. Habisreutinger, M. A. Van Der Veen, C. Wang, M. Wagemaker, S. Van Der Zwaag, A. Nagai, Chem. Mater. 2021, 33, 818–833.
- 63L. Yao, C. Ma, L. Sun, D. Zhang, Y. Chen, E. Jin, X. Song, Z. Liang, K. X. Wang, J. Am. Chem. Soc. 2022, 144, 23534–23542.
- 64M. K. Shehab, K. S. Weeraratne, O. M. El-Kadri, V. K. Yadavalli, H. M. El-Kaderi, Macromol. Rapid Commun. 2022, 44, 2200782.
- 65Y. Li, S. Wang, P. K. Lee, J. He, D. Y. W. Yu, J. Power Sources 2017, 366, 226–232.
- 66W. K. Pang, H. F. Lin, V. K. Peterson, C. Z. Lu, C. E. Liu, S. C. Liao, J. M. Chen, J. Phys. Chem. C 2017, 121, 3680–3689.
- 67A. Sezer Hicyilmaz, A. Celik Bedeloglu, SN Appl. Sci. 2021, 3, 1–22.
- 68J. Zhang, Q. Lu, J. Fang, J. Wang, J. Yang, Y. Nuli, ACS Appl. Mater. Interfaces 2014, 6, 17965–17973.
- 69C. K. Lee, Y. J. Park, Chem. Commun. 2015, 51, 1210–1213.
- 70S. H. Yoon, Y. J. Park, Sci. Rep. 2017, 7, 1–12.
- 71P. K. Lee, M. H. Tahmasebi, T. Tan, S. Ran, S. T. Boles, D. Y. W. Yu, Mater. Today Energy 2019, 12, 297–302.
- 72L. Wang, X. Wang, B. Song, Z. Wang, F. Wan, Energy Technol. 2023, 11, 2201084.
- 73Z. Liu, Y. Jiang, Q. Hu, S. Guo, L. Yu, Q. Li, Q. Liu, X. Hu, Energy Environ. Mater. 2021, 4, 336–362.
- 74Z. Lu, F. Sui, Y. E. Miao, G. Liu, C. Li, W. Dong, J. Cui, T. Liu, J. Wu, C. Yang, J. Energy Chem. 2021, 58, 170–197.
- 75H. Yu, Y. Shi, B. Yuan, Y. He, L. Qiao, J. Wang, Q. Lin, Z. Chen, E. Han, Ionics 2021, 27, 907–923.
- 76M. Li, Z. Zhang, Y. Yin, W. Guo, Y. Bai, F. Zhang, B. Zhao, F. Shen, X. Han, ACS Appl. Mater. Interfaces 2020, 12, 3610–3616.
- 77P. Zhou, D. Yao, H. Liang, J. Yin, Y. Xia, Y. P. Zeng, ACS Appl. Energ. Mater. 2022, 5, 2011–2023.
- 78Z. Zhou, T. Zhao, X. Lu, H. Cao, X. Zha, Z. Zhou, J. Power Sources 2018, 396, 542–550.
- 79X. Luo, X. Lu, X. Chen, Y. Chen, C. Song, C. Yu, N. Wang, D. Su, C. Wang, X. Gao, G. Wang, L. Cui, J. Mater. Chem. A 2020, 8, 14788–14798.
- 80Y. Zhu, Y. Zhang, S. Jin, M. Li, H. Zhao, J. Cui, L. Jing, ACS Sustainable Chem. Eng. 2023, 11, 1434–1447.
- 81F. Zou, A. Manthiram, F. Zou, A. Manthiram, Adv. Energy Mater. 2020, 10, 2002508.
- 82N. Ohta, T. Sogabe, K. Kuroda, Carbon 2001, 39, 1434–1436.
- 83A. Guerfi, P. Charest, M. Dontigny, J. Trottier, M. Lagacé, P. Hovington, A. Vijh, K. Zaghib, J. Power Sources 2011, 196, 5667–5673.
- 84Y. Feng, Y. Yang, C. Yang, H. Sun, X. Miao, H. Ji, G. Yang, Int. J. Energy Res. 2022, 46, 18100–18108.
- 85H. Quang Pham, G. Kim, H. Min Jung, S.-W. Song, H. Q. Pham, S. Song, G. Kim, H. M. Jung, Adv. Funct. Mater. 2018, 28, 1704690.
- 86K. Qi, Y. Wang, N. Dong, B. Liu, G. Tian, S. Qi, D. Wu, Appl. Energy 2022, 320, 119282.
- 87Q. Zhang, Z. Sha, X. Cui, S. Qiu, C. He, J. Zhang, X. Wang, Y. Yang, Nanotechnol. Rev. 2020, 9, 1350–1358.
- 88G. Hernández, N. Lago, D. Shanmukaraj, M. Armand, D. Mecerreyes, Mater. Today Energy 2017, 6, 264–270.
- 89J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X. Zhang, L. Zong, J. Wang, L.-Q. Chen, J. Qin, Y. Cui, Nat. Nanotechnol. 2019, 14, 705–711.
- 90Y. Ma, Y. Jiao, Y. Yan, W. Chen, Y. Li, M. Zhou, D. Chen, J. Zhu, J. Power Sources 2022, 548, 232034.
- 91Y. Huang, S. Liu, Q. Chen, K. Jiao, B. Ding, J. Yan, Adv. Funct. Mater. 2022, 32, 2201496.
- 92R. Choudhury, J. Wild, Y. Yang, Joule 2021, 5, 1301–1305.
- 93Y. Ye, L.-Y. Chou, Y. Liu, H. Wang, H. K. Lee, W. Huang, J. Wan, K. Liu, G. Zhou, Y. Yang, A. Yang, X. Xiao, X. Gao, D. T. Boyle, H. Chen, W. Zhang, S. C. Kim, Y. Cui, Nat. Energy 2020, 5, 786–793.
- 94C. Pan, S.-J. Chen, Y.-H. Huang, L. Wang, J.-L. Luo, X.-Z. Fu, J. Power Sources 2022, 528, 231207.
- 95S. Wang, K. V. Kravchyk, A. N. Filippin, U. Müller, A. N. Tiwari, S. Buecheler, M. I. Bodnarchuk, M. V. Kovalenko, Adv. Sci. 2018, 5, 1700712.
- 96R. B. Araujo, A. Banerjee, P. Panigrahi, L. Yang, M. Strømme, M. Sjödin, C. M. Araujo, R. Ahuja, J. Mater. Chem. A 2017, 5, 4430–4454.
- 97Y. Liang, P. Zhang, J. Chen, Chem. Sci. 2013, 4, 1330.
- 98C. Wang, Y. Xu, Y. Fang, M. Zhou, L. Liang, S. Singh, H. Zhao, A. Schober, Y. Lei, J. Am. Chem. Soc. 2015, 137, 3124–3130.
- 99H. Banda, D. Damien, K. Nagarajan, A. Raj, M. Hariharan, M. M. Shaijumon, Adv. Energy Mater. 2017, 7, 1701316.
- 100A. Iordache, V. Maurel, J.-M. Mouesca, J. Pécaut, L. Dubois, T. Gutel, J. Power Sources 2014, 267, 553–559.
- 101Y. Liang, P. Zhang, S. Yang, Z. Tao, J. Chen, Adv. Energy Mater. 2013, 3, 600–605.
- 102W. Wan, H. Lee, X. Yu, C. Wang, K.-W. Nam, X.-Q. Yang, H. Zhou, RSC Adv. 2014, 4, 19878–19882.
- 103S. Suriyakumar, A. Mazumder, P. S. Dilip, M. Hariharan, M. M. Shaijumon, Batteries & Supercaps 2023, 6, e202300111.