Electroreductive Cross-Electrophile Coupling (eXEC) Reactions
Yaowen Liu
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
These authors contributed equally to this work.
Search for more papers by this authorPengfei Li
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
These authors contributed equally to this work.
Search for more papers by this authorYanwei Wang
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Youai Qiu
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
Search for more papers by this authorYaowen Liu
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
These authors contributed equally to this work.
Search for more papers by this authorPengfei Li
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
These authors contributed equally to this work.
Search for more papers by this authorYanwei Wang
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Youai Qiu
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
Search for more papers by this authorGraphical Abstract
Electroreductive cross-electrophile coupling (eXEC) has emerged as a practical, green, sustainable, efficient electrochemical and controllable approach for constructing C−C or C−X bonds through selective cross-coupling of different electrophiles. This Mini-review summarizes the recent protocols of electroreductive cross-electrophile coupling reactions.
Abstract
Electrochemistry utilizes electrons as a potent, controllable, and traceless alternative to chemical oxidants or reductants, and typically offers a more sustainable option for achieving selective organic synthesis. Recently, the merger of electrochemistry with readily available electrophiles has been recognized as a viable and increasingly popular methodology for efficiently constructing challenging C−C and C-heteroatom bonds in a sustainable manner for complex organic molecules. In this mini-review, we have systematically summarized the most recent advances in electroreductive cross-electrophile coupling (eXEC) reactions during the last decade. Our focus has been on readily available electrophiles, including aryl and alkyl organic (pseudo)halides, as well as small molecules such as CO2, SO2, and D2O.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1A. W. Dombrowski, N. J. Gesmundo, A. L. Aguirre, K. A. Sarris, J. M. Young, A. R. Bogdan, M. C. Martin, S. Gedeon, Y. Wang, ACS Med. Chem. Lett. 2020, 11, 597–604.
- 2S. Tabassum, A. F. Zahoor, S. Ahmad, R. Noreen, S. G. Khan, H. Ahmad, Mol. Diversity 2022, 26, 647–689.
- 3N. A. McGrath, M. Brichacek, J. T. Njardarson, J. Chem. Educ. 2010, 87, 1348–1349.
- 4N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–2483.
- 5
- 5aM. Tsutomu, M. Kunio, O. Atsumu, Bull. Chem. Soc. Jpn. 1971, 44, 581–581;
- 5bR. F. Heck, Acc. Chem. Res. 1979, 12, 146–151.
- 6
- 6aE. Negishi, A. O. King, N. Okukado, J. Org. Chem. 1977, 42, 1821–1823;
- 6bA. O. King, N. Okukado, E.-I. Negishi, J. Chem. Soc. Chem. Commun. 1977, 683–684.
- 7J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 2002, 102, 1359–1470.
- 8R. Chinchilla, C. Najera, Chem. Rev. 2007, 107, 874–922.
- 9
- 9aF. Paul, J. Patt, J. F. Hartwig, J. Am. Chem. Soc. 1994, 116, 5969–5970;
- 9bA. Guram, S. Buchwald, J. Am. Chem. Soc. 1994, 116, 7901–7902.
- 10
- 10aK. M. Korch, D. A. Watson, Chem. Rev. 2019, 119, 8192–8228;
- 10bJ. Choi, G. C. Fu, Science 2017, 356, 7230–7233.
- 11
- 11aD. J. Weix, Acc. Chem. Res. 2015, 48, 1767–1775;
- 11bJ. Liu, Y. Ye, J. L. Sessler, H. Gong, Acc. Chem. Res. 2020, 53, 1833–1845;
- 11cC. E. I. Knappke, S. Grupe, D. Gartner, M. Corpet, C. Gosmini, A. J. Wangelin, Chem. Eur. J. 2014, 20, 6828–6842.
- 12
- 12aD. A. Everson, D. J. Weix, J. Org. Chem. 2014, 79, 4793–4798;
- 12bS. Kim, M. J. Goldfogel, M. M. Gilbert, D. J. Weix, J. Am. Chem. Soc. 2020, 142, 9902–9907;
- 12cP. Zhang, C. C. Le, D. W. C. MacMillan, J. Am. Chem. Soc. 2016, 138, 8084–8087;
- 12dE. L. Lucas, E. R. Jarvo, Nat. Chem. Rev. 2017, 1, 0065.
- 13
- 13aX. Yu, T. Yang, S. Wang, H. Xu, H. Gong, Org. Lett. 2011, 13, 2138–2141;
- 13bH. Xu, C. Zhao, Q. Qian, W. Deng, H. Gong, Chem. Sci. 2013, 4, 4022–4029.
- 14M. Ociepa, A. J. Wierzba, J. Turkowska, D. Gryko, J. Am. Chem. Soc. 2020, 142, 5355–5361.
- 15C. Duplais, A. Krasovskiy, A. Wattenberg, B. H. Lipshutz, Chem. Commun. 2010, 46, 562–564.
- 16W. M. Czaplik, M. Mayer, A. Jacobi von Wangelin, Angew. Chem. Int. Ed. 2009, 48, 607–610.
- 17A. G. A. Volta, Nat. Philos. Chem. Arts 1800, 4, 179–187.
- 18M. Faraday, Ann. Phys. 1834, 47, 438–440.
- 19H. Kolbe, J. Prakt. Chem. 1847, 41, 137–139.
10.1002/prac.18470410118 Google Scholar
- 20
- 20aJ. L. Röckl, D. Pollok, R. Franke, S. R. Waldvogel, Acc. Chem. Res. 2020, 53, 45–61;
- 20bE. J. Horn, B. R. Rosen, Y. Chen, J. Tang, K. Chen, M. D. Eastgate, P. S. Baran, Nature 2016, 533, 77–81;
- 20cA. Wiebe, S. Lips, D. Schollmeyer, R. Franke, S. R. Waldvogel, Angew. Chem. Int. Ed. 2017, 56, 14727–14731;
- 20dP. Xu, P.-Y. Chen, H.-C. Xu, Angew. Chem. Int. Ed. 2020, 59, 14275–14280;
- 20eS. J. Tereniak, D. L. Bruns, S. S. Stahl, J. Am. Chem. Soc. 2020, 142, 20318–20323.
- 21
- 21aP. Xiong, H.-C. Xu, Acc. Chem. Res. 2019, 52, 3339–3350;
- 21bY. Yuan, A. Lei, Acc. Chem. Res. 2019, 52, 3309–3324;
- 21cK.-J. Jiao, Y.-K. Xing, Q.-L. Yang, H. Qiu, T.-S. Mei, Acc. Chem. Res. 2020, 53, 300–310;
- 21dZ.-W. Hou, D.-J. Liu, P. Xiong, X.-L. Lai, J. Song, H.-C. Xu, Angew. Chem. Int. Ed. 2021, 60, 2943–2947;
- 21eK. H. Michael, Z.-M. Su, R. Wang, H. Sheng, W. Li, F. Wang, S. S. Stahl, S. Jin, J. Am. Chem. Soc. 2022, 144, 22641–22650.
- 22
- 22aM. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230–13319;
- 22bB. Huang, Z. Sun, G. Sun, eScience 2022, 2, 243–277;
- 22cW. Yu, S. Wang, M. He, Z. Jiang, Y. Yu, J. Lan, J. Luo, P. Wang, X. Qi, T. Wang, A. Lei, Angew. Chem. Int. Ed. 2023, 62, e202219166;
- 22dS. Seo, D. Kim, H. Kim, Chem. Commun. 2021, 57, 11240–11243.
- 23
- 23aM. Durandetti, J. Périchon, J.-Y. Nédélec, J. Org. Chem. 1997, 62, 7914–7915;
- 23bH. Kim, H. Kim, T. H. Lambert, S. Lin, J. Am. Chem. Soc. 2020, 142, 2087–2092.
- 24R. J. Perkins, D. J. Pedro, E. C. Hansen, Org. Lett. 2017, 19, 3755–3758.
- 25M. C. Franke, V. R. Longley, M. Rafiee, S. S. Stahl, E. C. Hansen, D. J. Weix, ACS Catal. 2022, 12, 12617–12626.
- 26K.-J. Jiao, D. Liu, H.-X. Ma, H. Qiu, P. Fang, T.-S. Mei, Angew. Chem. Int. Ed. 2020, 59, 6520–6524.
- 27
- 27aT. B. Hamby, M. J. LaLama, C. S. Sevov, Science 2022, 376, 410–416;
- 27bB. L. Truesdell, T. B. Hamby, C. S. Sevov, J. Am. Chem. Soc. 2020, 142, 5884–5893.
- 28
- 28aM. D. Palkowitz, et al. J. Am. Chem. Soc. 2022, 144, 17709–17720;
- 28bT. Koyanagi, A. Herath, A. Chong, M. Ratnikov, A. Valiere, J. Chang, V. Molteni, J. Lore, Org. Lett. 2019, 21, 816–820.
- 29Z. Li, W. Sun, X. Wang, L. Li, Y. Zhang, C. Li, J. Am. Chem. Soc. 2021, 143, 3536–3543.
- 30G. Yang, Y. Wang, Y. Qiu, Chem. Eur. J. 2023, e202300959.
- 31
- 31aX. Chang, Q. Zhang, C. Guo, Angew. Chem. Int. Ed. 2020, 59, 12612–12622;
- 31bC.-Y. Cai, X.-L. Lai, Y. Wang, H.-H. Hu, J. Song, Y. Yang, C. Wang, H.-C. Xu, Nat. Catal. 2022, 5, 943–951.
- 32T. J. DeLano, S. E. Reisman, ACS Catal. 2019, 9, 6751–6754.
- 33D. Liu, Z.-R. Liu, Z.-H. Wang, C. Ma, S. Herbert, H. Schirok, T. -S Mei, Nat. Commun. 2022, 13, 7318.
- 34X. Hu, I. Cheng-Sánchez, S. Cuesta-Galisteo, C. Nevado, J. Am. Chem. Soc. 2023, 145, 6270–6279.
- 35Y. Wang, Z. Wang, I. L. Eshel, B. Sun, D. Liu, Y. Gu, A. Milo, T. S. Mei, Nat. Commun. 2023, 14, 2322.
- 36
- 36aH. Chen, C. Zhu, H. Yue, M. Rueping, ACS Catal. 2023, 13, 6773–6780;
- 36bB. Wang, P. Peng, W. Ma, Z. Liu, C. Huang, Y. Cao, P. Hu, X. Q., Q. Lu, J. Am. Chem. Soc. 2021, 143, 12985–12991.
- 37W. Zhang, L. Lu, W. Zhang, Y. Wang, S. D. Ware, J. Mondragon, J. Rein, N. Strotman, D. Lehnherr, K. A. See, S. Lin, Nature 2022, 604, 292–297.
- 38T. Kerackian, D. Bouyssi, G. Pilet, M. Médebielle, N. Monteiro, J. C. Vantourout, A. Amgoune, ACS Catal. 2022, 12, 12315–12325.
- 39X. Zhou, L. Guo, H. Zhang, R. Y. Xia, C. Yang, W. Xia, Adv. Synth. Catal. 2022, 364, 1526–1531.
- 40J.-M. Huang, X.-X. Wang, Y. Dong, Angew. Chem. Int. Ed. 2011, 50, 924–927.
- 41H. Wu, X. Li, L. Yang, W. Chen, C. Zou, W. Deng, Z. Wang, J. Hu, Y. Li, Y. Huang, Org. Lett. 2022, 24, 9342–9347.
- 42B. Zhang, Y. Gao, Y. Hioki, M. S. Oderinde, J. X. Qiao, K. X. Rodriguez, H.-J. Zhang, Y. Kawamata, P. S. Baran, Nature 2022, 606, 313–318.
- 43
- 43aM. He, Y. Sun, B. Han, Angew. Chem. Int. Ed. 2013, 52, 9620–9633;
- 43bJ. H. Ye, T. Ju, H. Huang, L. L. Liao, D. G. Yu, Acc. Chem. Res. 2021, 54, 2518–2531.
- 44
- 44aM. Miyashita, M. Sasaki, I. Hattori, M. Sakai, K. Tanino, Science 2004, 305, 495–499;
- 44bY. Y. Loh, K. Nagao, A. J. Hoover, D. Hesk, N. R. Rivera, S. L. Colletti, I. W. Davies, D. W. C. MacMillan, Science 2017, 358, 1182–1187;
- 44cR. P. Yu, D. Hesk, N. Rivera, I. Pelczer, P. J. Chirik, Nature 2016, 529, 195–199;
- 44dF. Alonso, I. P. Beletskaya, M. Yus, Chem. Rev. 2002, 102, 4009–4018.
- 45K.-J. Jiao, Z. -Mi Li, X.-T. Xu, L.-P. Zhang, Y.-Q. Li, K. Zhang, T.-S. Mei, Org. Chem. Front. 2018, 5, 2244–2248.
- 46N. W. J. Ang, J. C. A. Oliveira, L. Ackermann, Angew. Chem. Int. Ed. 2020, 59, 12842–12847.
- 47G.-Q. Sun, W. Zhang, L.-L. Liao, L. Li, Z.-H. Nie, J.-G. Wu, Z. Zhang, D.-G. Yu, Nat. Commun. 2021, 12, 7086–7095.
- 48Y. Wang, Z. Zhao, D. Pan, S. Wang, K. Jia, D. Ma, G. Yang, X.-S. Xue, Y. Qiu, Angew. Chem. Int. Ed. 2022, 61, e202210201.
- 49Z. Zhao, Y. Liu, S. Wang, S. Tang, D. Ma, Z. Zhu, Guo. Y Qiu, Angew. Chem. Int. Ed. 2023, 62, e202214710.
- 50G.-Q. Sun, P. Yu, W. Zhang, W. Zhang, Y. Wang, L.-L. Liao, Z. Zhang, L. Li, Z. Lu, D.-G. Yu, S. Lin, Nature 2023, 615, 67–72.
- 51
- 51aK. Zhang, B.-H. Ren, X.-F. Liu, L.-L. Wang, M. Zhang, W.-M. Ren, X.-B. Lu, W.-Z. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202207660;
- 51bY. Wang, S. Tang, G. Yang, S. Wang, D. Ma, Y. Qiu, Angew. Chem. Int. Ed. 2022, 61, e202207746.
- 52T. S. Lou, Y. Kawamata, T. Ewing, G. A. Correa-Otero, M. R. Collins, P. S. Baran, Angew. Chem. Int. Ed. 2022, 61, e202208080.
- 53
- 53aC. Liu, S. Han, M. Li, X. Chong, B. Zhang, Angew. Chem. Int. Ed. 2020, 59, 18527–18531;
- 53bL. Lu, H. Li, Y. Zheng, F. Bu, A. Lei, CCS Chem. 2020, 2, 2669–2675;
- 53cD. Wood, L. Song, Angew. Chem. Int. Ed. 2023, 62, e202218858.
- 54P. Li, C. Guo, S. Wang, D. Ma, T. Feng, Y. Wang, Y. Qiu, Nat. Commun. 2022, 13, 3774.