Sandwich-Kernelled AgCu Nanoclusters with Golden Ratio Geometry and Promising Photothermal Efficiency
Liang Fang
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorWentao Fan
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorGuoqing Bian
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorRunguo Wang
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorDr. Qing You
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorDr. Wanmiao Gu
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorDr. Nan Xia
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorDr. Lingwen Liao
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorProf. Dr. Jin Li
Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorProf. Dr. Haiteng Deng
MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Nan Yan
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhikun Wu
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorLiang Fang
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorWentao Fan
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorGuoqing Bian
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorRunguo Wang
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorDr. Qing You
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorDr. Wanmiao Gu
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorDr. Nan Xia
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorDr. Lingwen Liao
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorProf. Dr. Jin Li
Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorProf. Dr. Haiteng Deng
MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Nan Yan
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhikun Wu
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorGraphical Abstract
A silver copper nanocluster with a golden ratio pentangle structure is prepared. It shows promising photothermal conversion. It is a novel alloy nanocluster with a sandwich-like kernel (diameter≈0.9 nm and length≈0.25 nm), and gives insight into the relationship between structure and photothermal properties.
Abstract
Metal nanoclusters have recently attracted extensive interest from the scientific community. However, unlike carbon-based materials and metal nanocrystals, they rarely exhibit a sheet kernel structure, probably owing to the instability caused by the high exposure of metal atoms (particularly in the relatively less noble Ag or Cu nanoclusters) in such a structure. Herein, we synthesized a novel AgCu nanocluster with a sandwich-like kernel (diameter≈0.9 nm and length≈0.25 nm) by introducing the furfuryl mercaptan ligand (FUR) and the alloying strategy. Interestingly, the kernel consists of a centered silver atom and two planar Ag10 pentacle units with completely mirrored symmetry after a rotation of 36 degrees. The two Ag10 pentacles and some extended structures show an unreported golden ratio geometry, and the two inner five-membered rings and the centered Ag atom form an unanticipated full-metal ferrocene-like structure. The featured kernel structure causes the dominant radial direction transition of excitation electrons, as determined via time-dependent density functional theory calculations, which affords the protruding absorption at 612 nm and contributes to the promising photothermal conversion efficiency of 67.6 % of the as-obtained nanocluster, having important implications for structure-property correlation and the development of nanocluser-based photothermal materials.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202305604-sup-0001-(AgCu)31.cif3.6 MB | Supporting Information |
anie202305604-sup-0001-misc_information.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aQ. Li, J. Kulikowski, D. Doan, O. A. Tertuliano, C. J. Zeman, M. M. Wang, G. C. Schatz, X. W. Gu, Science 2022, 378, 768–773;
- 1bM. Bodiuzzaman, A. Ghosh, K. S. Sugi, A. Nag, E. Khatun, B. Varghese, G. Paramasivam, S. Antharjanam, G. Natarajan, T. Pradeep, Angew. Chem. Int. Ed. 2019, 58, 189–194;
- 1cA. Desireddy, B. E. Conn, J. Guo, B. Yoon, R. N. Barnett, B. M. Monahan, K. Kirschbaum, W. P. Griffith, R. L. Whetten, U. Landman, T. P. Bigioni, Nature 2013, 501, 399–402;
- 1dR. Jin, C. Zeng, M. Zhou, Y. Chen, Chem. Rev. 2016, 116, 10346–10413;
- 1eK. Yonesato, H. Ito, H. Itakura, D. Yokogawa, T. Kikuchi, N. Mizuno, K. Yamaguchi, K. Suzuki, J. Am. Chem. Soc. 2019, 141, 19550–19554;
- 1fN. Xia, Z. Wu, Chem. Sci. 2021, 12, 2368–2380.
- 2
- 2aS. Tian, Y.-Z. Li, M.-B. Li, J. Yuan, J. Yang, Z. Wu, R. Jin, Nat. Commun. 2015, 6, 8667;
- 2bS. L. Zhuang, L. W. Liao, J. Y. Yuan, N. Xia, Y. Zhao, C. M. Wang, Z. B. Gan, N. Yan, L. Z. He, J. Li, H. T. Deng, Z. Y. Guan, J. L. Yang, Z. K. Wu, Angew. Chem. Int. Ed. 2019, 58, 4510–4514;
- 2cN. Xia, J. Yuan, L. Liao, W. Zhang, J. Li, H. Deng, J. Yang, Z. Wu, J. Am. Chem. Soc. 2020, 142, 12140–12145.
- 3
- 3aJ. Dong, Z. Gan, W. Gu, Q. You, Y. Zhao, J. Zha, J. Li, H. Deng, N. Yan, Z. Wu, Angew. Chem. Int. Ed. 2021, 60, 17932–17936;
- 3bZ. Lei, J. J. Li, X. K. Wan, W. H. Zhang, Q.-M. Wang, Angew. Chem. Int. Ed. 2018, 57, 8639–8643;
- 3cN. Yan, N. Xia, L. Liao, M. Zhu, F. Jin, R. Jin, Z. Wu, Sci. Adv. 2018, 4, eaat7259.
- 4
- 4aM. H. Anjass, K. Kastner, F. Nägele, M. Ringenberg, J. F. Boas, J. Zhang, A. Bond, T. Jacob, C. Streb, Angew. Chem. Int. Ed. 2019, 58, 10048–10050;
- 4bK. Salorinne, R. W. Y. Man, C.-H. Li, M. Taki, M. Nambo, C. M. Crudden, Angew. Chem. Int. Ed. 2017, 56, 6198–6202;
- 4cZ. Gan, N. Xia, Z. Wu, Acc. Chem. Res. 2018, 51, 2774–2783;
- 4dM. S. Bootharaju, S. M. Kozlov, Z. Cao, M. Harb, N. Maity, A. Shkurenko, M. R. Parida, M. N. Hedhili, M. Eddaoudi, O. F. Mohammed, O. M. Bakr, L. Cavallo, J. M. Basset, J. Am. Chem. Soc. 2017, 139, 1053–1056;
- 4eZ.-J. Guan, J.-J. Li, F. Hu, Q.-M. Wang, Angew. Chem. Int. Ed. 2022, 61, e202209725;
- 4fK. G. Liu, X. M. Gao, T. Liu, M. L. Hu, D. E. Jiang, J. Am. Chem. Soc. 2020, 142, 16905–16909.
- 5
- 5aG. Deng, K. Lee, H. Deng, S. Malola, M. S. Bootharaju, H. Häkkinen, N. Zheng, T. Hyeon, Angew. Chem. Int. Ed. 2023, 62, e202217483;
- 5bJ. Yan, B. K. Teo, N. Zheng, Acc. Chem. Res. 2018, 51, 3084–3093;
- 5cZ. Wu, Angew. Chem. Int. Ed. 2012, 51, 2934–2938;
- 5dX. Liu, J. Ruiz, D. Astruc, Chem. Commun. 2017, 53, 11134–11137;
- 5eX.-H. Ma, Y. Si, L.-L. Luo, Z.-Y. Wang, S.-Q. Zang, T. C. W. Mak, ACS Nano 2022, 16, 5507–5514;
- 5fN. Xia, J. Xing, D. Peng, S. Ji, J. Zha, N. Yan, Y. Su, X. Jiang, Z. Zeng, J. Zhao, Z. Wu, Nat. Commun. 2022, 13, 5934;
- 5gJ. Zha, X. Meng, W. Fan, Q. You, N. Xia, W. Gu, Y. Zhao, L. Hu, J. Li, H. Deng, H. Wang, N. Yan, Z. Wu, ACS Appl. Mater. Interfaces 2023, 15, 3985–3992;
- 5hS. Yang, J. Chai, H. Chong, Y. Song, H. Yu, M. Zhu, Chem. Commun. 2018, 54, 4314–4316.
- 6
- 6aA. Pniakowska, K. K. Ramankutty, P. Obstarczyk, M. P. Bakulić, Ž. S. Maršić, V. Bonačić-Koutecký, T. Bürgi, J. Olesiak-Bańska, Angew. Chem. Int. Ed. 2022, 61, e202209645;
- 6bX. Kang, X. Wei, X. Liu, S. Wang, T. Yao, S. Wang, M. Zhu, Nat. Commun. 2021, 12, 6186;
- 6cX. Ma, L. Xiong, L. Qin, Y. Tang, G. Ma, Y. Pei, Z. Tang, Chem. Sci. 2021, 12, 12819–12826;
- 6dJ. Q. Wang, S. Stegmaier, T. F. Fässler, Angew. Chem. Int. Ed. 2009, 48, 1998–2002;
- 6eC. Yao, J. Chen, M.-B. Li, L. Liu, J. Yang, Z. Wu, Nano Lett. 2015, 15, 1281–1287;
- 6fZ. Liu, X. Meng, W. Gu, J. Zha, N. Yan, Q. You, N. Xia, H. Wang, Z. Wu, Acta Phys.-Chim. Sin. 2023, 39, 2212064;
- 6gQ.-Y. Wang, J. Wang, S. Wang, Z.-Y. Wang, M. Cao, C.-L. He, J.-Q. Yang, S.-Q. Zang, T. C. W. Mak, J. Am. Chem. Soc. 2020, 142, 12010–12014.
- 7Deposition Number 2227128 (for (AgCu)31) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 8J. Wang, Z. Y. Wang, S.-J. Li, S.-Q. Zang, T. C. W. Mak, Angew. Chem. Int. Ed. 2021, 60, 5959–5964.
- 9
- 9aM. A. Elliott, J. Kelly, J. Friedel, J. Brodsky, P. Mulcahy, PLoS One 2015, 10, e0131045;
- 9bU. Lüttge, G. M. Souza, Prog. Biophys. Mol. Biol. 2019, 146, 98–103.
- 10
- 10aQ. Liang, Z. Chen, Q. Zhang, A. T. S. Wee, Adv. Funct. Mater. 2022, 32, 2203555;
- 10bW. Zhang, P. Zhu, J. Wang, H. Zhu, IEEE Trans. Ind. Electron. 2021, 68, 12482–12492.
- 11
- 11aZ. Wang, F. Alkan, C. M. Aikens, M. Kurmoo, Z. Y. Zhang, K. P. Song, C. H. Tung, D. Sun, Angew. Chem. Int. Ed. 2022, 61, e202206742;
- 11bY.-H. Feng, X.-L. Gao, J.-F. Shi, K. Zhou, J.-Y. Ji, Y.-F. Bi, Chem. Asian J. 2019, 14, 3279–3282;
- 11cK. Zhou, X. L. Wang, C. Qin, H. N. Wang, G. S. Yang, Y. Q. Jiao, P. Huang, K. Z. Shao, Z. M. Su, Dalton Trans. 2013, 42, 1352–1355.
- 12
- 12aX. Yuan, S. Malola, G. C. Deng, F. J. Chen, H. Hakkinen, B. K. Teo, L. S. Zheng, N. Zheng, Inorg. Chem. 2021, 60, 3529–3533;
- 12bT. Nilges, J. Messel, M. Bawohl, S. Lange, Chem. Mater. 2008, 20, 4080–4091;
- 12cL. Ren, P. Yuan, H. Su, S. Malola, S. Lin, Z. Tang, B. K. Teo, H. Hakkinen, L. Zheng, N. Zheng, J. Am. Chem. Soc. 2017, 139, 13288–13291;
- 12dA. Ruditskiy, Y. Xia, J. Am. Chem. Soc. 2016, 138, 3161–3167.
- 13X. Liu, J. Chen, J. Yuan, Y. Li, J. Li, S. Zhou, C. Yao, L. Liao, S. Zhuang, Y. Zhao, H. Deng, J. Yang, Z. Wu, Angew. Chem. Int. Ed. 2018, 57, 11273–11277.
- 14
- 14aO. Kysliak, S. H. F. Schreiner, N. Grabicki, P. Liebing, F. Weigend, O. Dumele, R. Kretschmer, Angew. Chem. Int. Ed. 2022, 61, e202206963;
- 14bO. Oms, J. L. Bideau, F. Leroux, A. Lee, D. Leclercq, A. Vioux, J. Am. Chem. Soc. 2004, 126, 12090–12096.
- 15S. Zhuang, L. Liao, M. B. Li, C. Yao, Y. Zhao, H. Dong, J. Li, H. Deng, L. Li, Z. Wu, Nanoscale 2017, 9, 14809–14813.
- 16G. Zheng, S. Jiao, W. Zhang, S. Wang, Q. Zhang, L. Gu, W. Ye, J. Li, X. Ren, Z. Zhang, K. Wong, Nano Res. 2022, 15, 6574–6581.
- 17Y. Li, Y. Song, X. Zhang, T. Liu, T. Xu, H. Wang, D.-E. Jiang, R. Jin, J. Am. Chem. Soc. 2022, 144, 12381–12389.
- 18F. Jin, H. Dong, Y. Zhao, S. Zhuang, L. Liao, N. Yan, W. Gu, J. Zha, J. Yuan, J. Li, H. Deng, Z. Gan, J. Yang, Z. Wu, Acta Chim. Sin. 2020, 78, 407–411.
- 19Z. Wang, L. Li, L. Feng, Z.-Y. Gao, C.-H. Tung, L.-S. Zheng, D. Sun, Angew. Chem. Int. Ed. 2022, 61, e202200823.