Fast and Tunable Phosphorescence from Organic Ionic Crystals
Iida Partanen
Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
Search for more papers by this authorOmar Al-Saedy
Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
Search for more papers by this authorDr. Toni Eskelinen
Department of Chemistry and Materials Science, Aalto University, 00076 Aalto, Finland
Search for more papers by this authorProf. Antti J. Karttunen
Department of Chemistry and Materials Science, Aalto University, 00076 Aalto, Finland
Search for more papers by this authorProf. Jarkko J. Saarinen
Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
Search for more papers by this authorDr. Ondrej Mrózek
Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
Search for more papers by this authorCorresponding Author
Prof. Andreas Steffen
Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
Search for more papers by this authorCorresponding Author
Dr. Andrey Belyaev
Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
Department of Chemistry/Nanoscience Center, University of Jyväskylä, Survontie 9C, 40014 Jyväskylä, Finland
Search for more papers by this authorCorresponding Author
Prof. Pi-Tai Chou
Department of Chemistry, National Taiwan University, Taipei, Taiwan, 10617 (ROC)
Search for more papers by this authorCorresponding Author
Prof. Igor O. Koshevoy
Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
Search for more papers by this authorIida Partanen
Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
Search for more papers by this authorOmar Al-Saedy
Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
Search for more papers by this authorDr. Toni Eskelinen
Department of Chemistry and Materials Science, Aalto University, 00076 Aalto, Finland
Search for more papers by this authorProf. Antti J. Karttunen
Department of Chemistry and Materials Science, Aalto University, 00076 Aalto, Finland
Search for more papers by this authorProf. Jarkko J. Saarinen
Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
Search for more papers by this authorDr. Ondrej Mrózek
Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
Search for more papers by this authorCorresponding Author
Prof. Andreas Steffen
Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
Search for more papers by this authorCorresponding Author
Dr. Andrey Belyaev
Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
Department of Chemistry/Nanoscience Center, University of Jyväskylä, Survontie 9C, 40014 Jyväskylä, Finland
Search for more papers by this authorCorresponding Author
Prof. Pi-Tai Chou
Department of Chemistry, National Taiwan University, Taipei, Taiwan, 10617 (ROC)
Search for more papers by this authorCorresponding Author
Prof. Igor O. Koshevoy
Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
Search for more papers by this authorGraphical Abstract
The photoluminescence mechanism of crystalline diphosphonium iodide salts strongly depends on anion-π interactions. In the case of iodide–π charge transfer combined with electrostatically controlled packing effects, high quantum yields (Φem up to 0.75) and fast radiative rate constants (kr of up to 2.77×105 s−1) of phosphorescence have been realized at room temperature, which are exceptionally rare for metal-free systems.
Abstract
Crystalline diphosphonium iodides [MeR2P-spacer-R2Me]I with phenylene (1, 2), naphthalene (3, 4), biphenyl (5) and anthracene (6) as aromatic spacers, are photoemissive under ambient conditions. The emission colors (λem values from 550 to 880 nm) and intensities (Φem reaching 0.75) are defined by the composition and substitution geometry of the central conjugated chromophore motif, and the anion-π interactions. Time-resolved and variable-temperature luminescence studies suggest phosphorescence for all the titled compounds, which demonstrate observed lifetimes of 0.46–92.23 μs at 297 K. Radiative rate constants kr as high as 2.8×105 s−1 deduced for salts 1–3 were assigned to strong spin-orbit coupling enhanced by an external heavy atom effect arising from the anion-π charge-transfer character of the triplet excited state. These rates of anomalously fast metal-free phosphorescence are comparable to those of transition metal complexes and organic luminophores that utilize triplet excitons via a thermally activated delayed fluorescence mechanism, making such ionic luminophores a new paradigm for the design of photofunctional and responsive molecular materials.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data are available from Cambridge Crystallographic Data Centre (https://www.ccdc.cam.ac.uk/structures/), in the Supporting Information, and from the authors on request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202305108-sup-0001-1.cif497 KB | Supporting Information |
anie202305108-sup-0001-1d.cif1 MB | Supporting Information |
anie202305108-sup-0001-1e.cif2.5 MB | Supporting Information |
anie202305108-sup-0001-1otf.cif567.3 KB | Supporting Information |
anie202305108-sup-0001-2.cif325.9 KB | Supporting Information |
anie202305108-sup-0001-2w.cif617.3 KB | Supporting Information |
anie202305108-sup-0001-3.cif655.4 KB | Supporting Information |
anie202305108-sup-0001-4.cif464.8 KB | Supporting Information |
anie202305108-sup-0001-5.cif1.2 MB | Supporting Information |
anie202305108-sup-0001-6.cif2.8 MB | Supporting Information |
anie202305108-sup-0001-misc_information.pdf2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Mukherjee, P. Thilagar, Chem. Commun. 2015, 51, 10988–11003;
- 1bS. Hirata, Adv. Opt. Mater. 2017, 5, 1700116;
- 1cKenry, C. Chen, B. Liu, Nat. Commun. 2019, 10, 2111;
- 1dA. D. Nidhankar, Goudappagouda, V. C. Wakchaure, S. S. Babu, Chem. Sci. 2021, 12, 4216–4236.
- 2
- 2aW. Z. Yuan, X. Y. Shen, H. Zhao, J. W. Y. Lam, L. Tang, P. Lu, C. Wang, Y. Liu, Z. Wang, Q. Zheng, J. Z. Sun, Y. Ma, B. Z. Tang, J. Phys. Chem. C 2010, 114, 6090–6099;
- 2bW. Zhao, Z. He, J. W. Y. Lam, Q. Peng, H. Ma, Z. Shuai, G. Bai, J. Hao, B. Z. Tang, Chem 2016, 1, 592–602;
- 2cC. Chen, R. Huang, A. S. Batsanov, P. Pander, Y.-T. Hsu, Z. Chi, F. B. Dias, M. R. Bryce, Angew. Chem. Int. Ed. 2018, 57, 16407–16411;
- 2dE. Hamzehpoor, D. F. Perepichka, Angew. Chem. Int. Ed. 2020, 59, 9977–9981;
- 2eZ. Ruan, Q. Liao, Q. Dang, X. Chen, C. Deng, Z. Gao, J. Lin, S. Liu, Y. Chen, Z. Tian, Z. Li, Adv. Opt. Mater. 2021, 9, 2001549.
- 3
- 3aR. Boonsin, G. Chadeyron, J.-P. Roblin, D. Boyer, R. Mahiou, J. Mater. Chem. C 2015, 3, 9580–9587;
- 3bL. Yue, Y. Wang, J. Ma, S. Yuan, S. Xue, Q. Sun, W. Yang, Mater. Chem. Front. 2021, 5, 5497–5502.
- 4
- 4aA. Fermi, G. Bergamini, R. Peresutti, E. Marchi, M. Roy, P. Ceroni, M. Gingras, Dyes Pigm. 2014, 110, 113–122;
- 4bB. Xu, H. Wu, J. Chen, Z. Yang, Z. Yang, Y.-C. Wu, Y. Zhang, C. Jin, P.-Y. Lu, Z. Chi, S. Liu, J. Xu, M. Aldred, Chem. Sci. 2017, 8, 1909–1914;
- 4cM. Shimizu, S. Nagano, T. Kinoshita, Chem. Eur. J. 2020, 26, 5162–5167.
- 5
- 5aH. Thomas, D. L. Pastoetter, M. Gmelch, T. Achenbach, A. Schlögl, M. Louis, X. Feng, S. Reineke, Adv. Mater. 2020, 32, 2000880;
- 5bP. She, J. Duan, J. Lu, Y. Qin, F. Li, C. Liu, S. Liu, Y. Ma, Q. Zhao, Adv. Opt. Mater. 2022, 10, 2102706.
- 6
- 6aR. Pashazadeh, P. Pander, A. Bucinskas, P. J. Skabara, F. B. Dias, J. V. Grazulevicius, Chem. Commun. 2018, 54, 13857–13860;
- 6bS.-J. Woo, Y.-H. Kim, J.-J. Kim, Chem. Mater. 2021, 33, 5618–5630;
- 6cB. Sk, S. Sharma, A. James, S. Kundu, A. Patra, J. Mater. Chem. C 2020, 8, 12943–12950.
- 7
- 7aZ. Yang, C. Xu, W. Li, Z. Mao, X. Ge, Q. Huang, H. Deng, J. Zhao, F. L. Gu, Y. Zhang, Z. Chi, Angew. Chem. Int. Ed. 2020, 59, 17451–17455;
- 7bX.-K. Ma, W. Zhang, Z. Liu, H. Zhang, B. Zhang, Y. Liu, Adv. Mater. 2021, 33, 2007476.
- 8
- 8aM. Baroncini, G. Bergamini, P. Ceroni, Chem. Commun. 2017, 53, 2081–2093;
- 8bA. Forni, E. Lucenti, C. Botta, E. Cariati, J. Mater. Chem. C 2018, 6, 4603–4626;
- 8cH. Sun, R. Ding, S. Lv, S. Zhou, S. Guo, Z. Qian, H. Feng, J. Phys. Chem. Lett. 2020, 11, 4962–4969.
- 9
- 9aD. R. Lee, K. H. Lee, W. Shao, C. L. Kim, J. Kim, J. Y. Lee, Chem. Mater. 2020, 32, 2583–2592;
- 9bW. Shao, H. Jiang, R. Ansari, P. M. Zimmerman, J. Kim, Chem. Sci. 2022, 13, 789–797.
- 10P. Xue, P. Wang, P. Chen, B. Yao, P. Gong, J. Sun, Z. Zhang, R. Lu, Chem. Sci. 2017, 8, 6060–6065.
- 11
- 11aO. Bolton, K. Lee, H.-J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3, 205–2010;
- 11bJ. Zhou, L. Stojanović, A. A. Berezin, T. Battisti, A. Gill, B. M. Kariuki, D. Bonifazi, R. Crespo-Otero, M. R. Wasielewski, Y.-L. Wu, Chem. Sci. 2021, 12, 767–773;
- 11cS. Garain, S. Kuila, B. C. Garain, M. Kataria, A. Borah, S. K. Pati, S. J. George, Angew. Chem. Int. Ed. 2021, 60, 12323–12327;
- 11dW. Dai, X. Niu, X. Wu, Y. Ren, Y. Zhang, G. Li, H. Su, Y. Lei, J. Xiao, J. Shi, B. Tong, Z. Cai, Y. Dong, Angew. Chem. Int. Ed. 2022, 61, e202200236.
- 12
- 12aJ. Wang, X. Gu, H. Ma, Q. Peng, X. Huang, X. Zheng, S. H. P. Sung, G. Shan, J. W. Y. Lam, Z. Shuai, B. Z. Tang, Nat. Commun. 2018, 9, 2963;
- 12bH. Hu, F. Meier, D. Zhao, Y. Abe, Y. Gao, B. Chen, T. Salim, E. E. M. Chia, X. Qiao, C. Deibel, Y. M. Lam, Adv. Mater. 2018, 30, 1707621;
- 12cS. Yang, D. Wu, W. Gong, Q. Huang, H. Zhen, Q. Ling, Z. Lin, Chem. Sci. 2018, 9, 8975–8981;
- 12dZ.-Y. Zhang, Y. Chen, Y. Liu, Angew. Chem. Int. Ed. 2019, 58, 6028–6032;
- 12eS. Garain, S. M. Wagalgave, A. A. Kongasseri, B. C. Garain, S. N. Ansari, G. Sardar, D. Kabra, S. K. Pati, S. J. George, J. Am. Chem. Soc. 2022, 144, 10854–10861.
- 13
- 13aG. Chen, S. Guo, H. Feng, Z. Qian, J. Mater. Chem. C 2019, 7, 14535–14542;
- 13bL.-J. Xu, A. Plaviak, X. Lin, M. Worku, Q. He, M. Chaaban, B. J. Kim, B. Ma, Angew. Chem. Int. Ed. 2020, 59, 23067–23071;
- 13cP. Alam, N. L. C. Leung, J. Liu, T. S. Cheung, X. Zhang, Z. He, R. T. K. Kwok, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, C. C. S. Chan, K. S. Wong, Q. Peng, B. Z. Tang, Adv. Mater. 2020, 32, 2001026;
- 13dP. Alam, T. S. Cheung, N. L. C. Leung, J. Zhang, J. Guo, L. Du, R. T. K. Kwok, J. W. Y. Lam, Z. Zeng, D. L. Phillips, H. H. Y. Sung, I. D. Williams, B. Z. Tang, J. Am. Chem. Soc. 2022, 144, 3050–3062;
- 13eY.-S. Wang, T. Zhao, J.-H. Song, X.-D. Tao, D.-H. Zhang, L. Meng, X.-L. Chen, C.-Z. Lu, Chem. Eng. J. 2023, 460, 141836;
- 13fJ. Wei, C. Liu, J. Duan, A. Shao, J. Li, J. Li, W. Gu, Z. Li, S. Liu, Y. Ma, W. Huang, Q. Zhao, Nat. Commun. 2023, 14, 627.
- 14P. She, Y. Yu, Y. Qin, Y. Zhang, F. Li, Y. Ma, S. Liu, W. Huang, Q. Zhao, Adv. Opt. Mater. 2020, 8, 1901437.
- 15G. Chen, H. Feng, F. Feng, P. Xu, J. Xu, S. Pan, Z. Qian, J. Phys. Chem. Lett. 2018, 9, 6305–6311.
- 16G. Bergamini, A. Fermi, C. Botta, U. Giovanella, S. Di Motta, F. Negri, R. Peresutti, M. Gingras, P. Ceroni, J. Mater. Chem. C 2013, 1, 2717–2724.
- 17
- 17aA. Belyaev, P.-T. Chou, I. O. Koshevoy, Chem. Eur. J. 2021, 27, 537–552;
- 17bA. Belyaev, Y.-H. Cheng, Z.-Y. Liu, A. J. Karttunen, P.-T. Chou, I. O. Koshevoy, Angew. Chem. Int. Ed. 2019, 58, 13456–13465.
- 18C. M. Marian, Annu. Rev. Phys. Chem. 2021, 72, 617–640.
- 19
- 19aR. A. Baldwin, M. T. Cheng, J. Org. Chem. 1967, 32, 1572–1577;
- 19bD. F. Brayton, D. M. Heinekey, Organometallics 2008, 27, 3901–3906.
- 20A. Belyaev, I. Kolesnikov, A. S. Melnikov, V. V. Gurzhiy, S. P. Tunik, I. O. Koshevoy, New J. Chem. 2019, 43, 13741–13750.
- 21J. H. K. Yip, J. Prabhavathy, Angew. Chem. Int. Ed. 2001, 40, 2159–2162.
10.1002/1521-3773(20010601)40:11<2159::AID-ANIE2159>3.0.CO;2-X CAS PubMed Web of Science® Google Scholar
- 22Deposition Numbers 2206825 (for 1D), 2206826 (for 1E), 2206827 (for 1), 2206828 (for 1[OTf]), 2206829 (for 2W), 2264399 (for 2), 2206831 (for 3), 2206830 (for 4), 2206832 (for 5), 2206833 (for 6) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 23D. L. Herring, J. Org. Chem. 1961, 26, 3998–3999.
- 24
- 24aH. T. Chifotides, K. R. Dunbar, Acc. Chem. Res. 2013, 46, 894–906;
- 24bI. A. Rather, S. A. Wagay, R. Ali, Coord. Chem. Rev. 2020, 415, 213327.
- 25S. Saha, Acc. Chem. Res. 2018, 51, 2225–2236.
- 26Z. Fei, N. Kocher, C. J. Mohrschladt, H. Ihmels, D. Stalke, Angew. Chem. Int. Ed. 2003, 42, 783–787.
- 27S. Kepler, M. Zeller, S. V. Rosokha, J. Am. Chem. Soc. 2019, 141, 9338–9348.
- 28
- 28aH. Yersin, A. F. Rausch, R. Czerwieniec, T. Hofbeck, T. Fischer, Coord. Chem. Rev. 2011, 255, 2622–2652;
- 28bP.-T. Chou, Y. Chi, M.-W. Chung, C.-C. Lin, Coord. Chem. Rev. 2011, 255, 2653–2665.
- 29
- 29aZ. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev. 2017, 46, 915–1016;
- 29bF.-M. Xie, J.-X. Zhou, Y.-Q. Li, J.-X. Tang, J. Mater. Chem. C 2020, 8, 9476–9494.
- 30A. G. Crawford, A. D. Dwyer, Z. Liu, A. Steffen, A. Beeby, L.-O. Pålsson, D. J. Tozer, T. B. Marder, J. Am. Chem. Soc. 2011, 133, 13349–13362.
- 31Y. Liu, C. Li, Z. Ren, S. Yan, M. R. Bryce, Nat. Rev. Mater. 2018, 3, 18020.
- 32
- 32aR. Czerwieniec, M. J. Leitl, H. H. H. Homeier, H. Yersin, Coord. Chem. Rev. 2016, 325, 2–28;
- 32bZ. Han, X.-Y. Dong, S.-Q. Zang, Adv. Opt. Mater. 2021, 9, 2100081.
- 33P. She, Y. Qin, Y. Ma, F. Li, J. Lu, P. Dai, H. Hu, X. Liu, S. Liu, W. Huang, Q. Zhao, Sci. China Mater. 2021, 64, 1485–1494.
- 34
- 34aY.-Y. Hu, X.-Y. Dai, X. Dong, M. Huo, Y. Liu, Angew. Chem. Int. Ed. 2022, 61, e202213097;
- 34bC. Wang, Y. Zhang, Z. Wang, Y. Zheng, X. Zheng, L. Gao, Q. Zhou, J. Hao, B. Pi, Q. Li, C. Yang, Y. Li, K. Wang, Y. Zhao, Adv. Funct. Mater. 2022, 32, 2111941.
- 35
- 35aAPEX2—Software Suite for Crystallographic Programs, Bruker AXS, Inc., Madison, WI, USA, 2010;
- 35bG. M. Sheldrick, SADABS-2008/1—Bruker AXS Area Detector Scaling and Absorption Correction, Bruker AXS, Madison, Wisconsin, USA, 2008;
- 35cG. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3–8;
- 35dL. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849–854;
- 35eF. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2022, 11, e1606;
- 35fM. A. Rohrdanz, K. M. Martins, J. M. Herbert, J. Chem. Phys. 2009, 130, 054112;
- 35gF. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305;
- 35hF. Neese, J. Comput. Chem. 2003, 24, 1740–1747;
- 35iF. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 2009, 356, 98–109;
- 35jV. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995–2001;
- 35kE. v. Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1993, 99, 4597–4610;
- 35lC. van Wüllen, J. Chem. Phys. 1998, 109, 392–399;
- 35mB. de Souza, G. Farias, F. Neese, R. Izsák, J. Chem. Theory Comput. 2019, 15, 1896–1904;
- 35nJ. D. Rolfes, F. Neese, D. A. Pantazis, J. Comput. Chem. 2020, 41, 1842–1849;
- 35oR. C. Hilborn, Am. J. Phys. 1982, 50, 982–986;
- 35pR. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, B. Kirtman, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, e1360;
- 35qJ. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868;
- 35rC. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158–6170;
- 35sD. Vilela Oliveira, J. Laun, M. F. Peintinger, T. Bredow, J. Comput. Chem. 2019, 40, 2364–2376;
- 35tH. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188–5192.