Host–Guest Doping in Flexible Organic Crystals for Room-Temperature Phosphorescence
Yang Xia
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road NO.688, Jinhua, 321004 P. R. China
College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorChenfei Zhu
College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorProf. Feng Cao
Department of Engineering Technology, Huzhou College, Xueshi Road. NO. 1, Huzhou, 313000 P. R. China
Search for more papers by this authorYunxia Shen
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road NO.688, Jinhua, 321004 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Mi Ouyang
College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yujian Zhang
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road NO.688, Jinhua, 321004 P. R. China
Search for more papers by this authorYang Xia
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road NO.688, Jinhua, 321004 P. R. China
College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorChenfei Zhu
College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorProf. Feng Cao
Department of Engineering Technology, Huzhou College, Xueshi Road. NO. 1, Huzhou, 313000 P. R. China
Search for more papers by this authorYunxia Shen
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road NO.688, Jinhua, 321004 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Mi Ouyang
College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yujian Zhang
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road NO.688, Jinhua, 321004 P. R. China
Search for more papers by this authorGraphical Abstract
The integration of flexibility and room-temperature phosphorescence in an organic single crystal is achieved by the host–guest doping strategy. The centimeter-scale crystals can be repeatedly bent and emit deep-red afterglow. This phenomenon occurs because the guest molecules, as trace impurities, greatly affect the emission properties of the materials, whereas the effect on the molecular packing of the host molecules is negligible.
Abstract
Organic single crystals (OSCs) with excellent flexibility and unique optical properties are of great importance due to their broad applicability in optical/optoelectronic devices and sensors. Nevertheless, fabricating flexible OSCs with room-temperature phosphorescence (RTP) remains a great challenge. Herein, we propose a host–guest doping strategy to achieve both RTP and flexibility of OSCs. The single-stranded crystal is highly bendable upon external force application and can immediately return to its original straight shape after removal of the stress, impressively emitting bright deep-red phosphorescence. The theoretical and experimental results demonstrate that the bright RTP arises from Förster resonance energy transfer (FRET) from the triphenylene molecules to the dopants. This strategy is both conceptually and synthetically simple and offers a universal approach for the preparation of flexible OSCs with RTP.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202217547-sup-0001-misc_information.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aV. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. Willett, T. Someya, M. Gershenson, J. Rogers, Science 2004, 303, 1644–1646;
- 1bL. Jiang, Y. Fu, H. Li, W. Hu, J. Am. Chem. Soc. 2008, 130, 3937–3941;
- 1cH. Yang, H. Liu, Y. Shen, S. Zhang, Q. Zhang, Q. Song, C. Lv, C. Zhang, B. Yang, Y. Ma, Y. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202115551; Angew. Chem. 2022, 134, e202115551.
- 2
- 2aC. Reddy, R. Gundakaram, S. Basavoju, M. Kirchner, K. Padmanabhan, G. Desiraju, Chem. Commun. 2005, 41, 3945–3947;
- 2bN. Chandrasekhar, R. Chandrasekar, Angew. Chem. Int. Ed. 2012, 51, 3556–3561; Angew. Chem. 2012, 124, 3616–3621;
- 2cA. Kumar, M. Rohullah, J. Ravi, M. Godumala, M. Annadhasana, R. Chandrasekar, CrystEngComm 2021, 23, 5774–5779.
- 3
- 3aK. Takazawa, Y. Kitahama, Y. Kimura, G. Kido, Nano Lett. 2005, 5, 1293–1296;
- 3bN. Chandrasekhar, M. Mohiddon, R. Chandrasekar, Adv. Opt. Mater. 2013, 1, 305–311.
- 4
- 4aL. Lan, X. Yang, B. Tang, X. Yu, X. Liu, L. Li, P. Naumov, H. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202200196; Angew. Chem. 2022, 134, e202200196;
- 4bL. Lan, H. Liu, X. Yu, X. Liu, H. Zhang, Angew. Chem. Int. Ed. 2021, 60, 11283–11287; Angew. Chem. 2021, 133, 11383–11387;
- 4cX. Yang, L. Lan, L. Li, X. Liu, P. Naumov, H. Zhang, Nat. Commun. 2022, 13, 2322.
- 5C. Wei, L. Bai, X. An, M. Xu, W. Liu, Chem 2022, 8, 1427–1441.
- 6
- 6aJ. Yang, M. Fang, Z. Li, Acc. Mater. Res. 2021, 2, 644–654;
- 6bR. Kabe, C. Adachi, Nature 2017, 550, 384–387;
- 6cH. Ma, Q. Peng, Z. An, W. Huang, Z. Shuai, J. Am. Chem. Soc. 2019, 141, 1010–1015;
- 6dZ. Yang, C. Xu, W. Li, Z. Mao, X. Ge, Q. Huang, H. Deng, J. Zhao, F. L. Gu, Y. Zhang, Z. Chi, Angew. Chem. Int. Ed. 2020, 59, 17451–17455; Angew. Chem. 2020, 132, 17604–17608.
- 7
- 7aB. Zhou, D. Yan, Adv. Funct. Mater. 2019, 29, 1807599;
- 7bX. Wang, Y. Sun, G. Wang, J. Li, X. Li, K. Zhang, Angew. Chem. Int. Ed. 2021, 60, 17138–17147; Angew. Chem. 2021, 133, 17275–17284;
- 7cW. Li, Z. Li, C. Si, M. Wong, K. Jinnai, A. Gupta, R. Kabe, C. Adachi, W. Huang, E. Zysman-Colman, I. Samuel, Adv. Mater. 2020, 32, 2003911.
- 8
- 8aS. Garain, S. Kuila, B. Garain, M. Kataria, A. Borah, S. Pati, S. George, Angew. Chem. Int. Ed. 2021, 60, 12323–12327; Angew. Chem. 2021, 133, 12431–12435;
- 8bJ. Li, J. Zhou, Z. Mao, Z. Xie, Z. Yang, B. Xu, C. Liu, X. Chen, D. Ren, H. Pan, G. Shi, Y. Zhang, Z. Chi, Angew. Chem. Int. Ed. 2018, 57, 6449–6453; Angew. Chem. 2018, 130, 6559–6563;
- 8cY. Wen, H. Liu, S. Zhang, G. Pan, Z. Yang, T. Lu, B. Li, J. Cao, B. Yang, CCS Chem. 2021, 3, 1940–1948;
- 8dW. Zhao, Z. He, B. Tang, Nat. Rev. Mater. 2020, 5, 869–885.
- 9
- 9aQ. Peng, H. Ma, Z. Shuai, Acc. Chem. Res. 2021, 54, 4, 940–949;
- 9bX. Ma, J. Wang, H. Tian, Acc. Chem. Res. 2019, 52, 3, 738–748;
- 9cZ. Yin, M. Gu, H. Ma, X. Jiang, J. Zhi, Y. Wang, H. Yang, W. Zhu, Z. An, Angew. Chem. Int. Ed. 2021, 60, 2058–2063; Angew. Chem. 2021, 133, 2086–2091;
- 9dS. Guo, W. Dai, X. Chen, Y. Lei, J. Shi, B. Tong, Z. Cai, Y. Dong, ACS Mater. Lett. 2021, 3, 379–397.
- 10
- 10aB. Ding, L. Ma, Z. Huang, X. Ma, H. Tian, Sci. Adv. 2021, 7, eabf9668;
- 10bC. Chen, Z. Chi, K. Chong, A. Batsanov, Z. Yang, Z. Mao, Z. Yang, B. Liu, Nat. Mater. 2021, 20, 175–180;
- 10cJ. Wei, B. Liang, R. Duan, Z. Cheng, C. Li, T. Zhou, Y. Yi, Y. Wang, Angew. Chem. Int. Ed. 2016, 55, 15589–15593; Angew. Chem. 2016, 128, 15818–15822;
- 10dD. Wang, Y. Xie, X. Wu, Y. Lei, Y. Zhou, Z. Cai, M. Liu, H. Wu, X. Huang, Y. Dong, J. Phys. Chem. Lett. 2021, 12, 1814–1821.
- 11F. Xiao, H. Gao, Y. Lei, W. Dai, M. Liu, X. Zheng, Z. Cai, X. Huang, H. Wu, D. Ding, Nat. Commun. 2022, 13, 186.
- 12Y. Wang, J. Yang, M. Fang, Y. Yu, B. Zou, L. Wang, Y. Tian, J. Cheng, B. Tang, Z. Li, Matter 2020, 3, 449–463.
- 13
- 13aJ. Yoo, J. Kim, J. Louis, I. Gopich, H. Chung, Nat. Commun. 2020, 11, 3336;
- 13bL. Yuan, W. Lin, K. Zheng, S. Zhu, Acc. Chem. Res. 2013, 46, 1462–1473;
- 13cX. Michalet, S. Weiss, M. Jäger, Chem. Rev. 2006, 106, 1785–1813.
- 14
- 14aS. Saha, M. Mishra, C. Reddy, G. Desiraju, Acc. Chem. Res. 2018, 51, 2957–2967;
- 14bG. Krishna, R. Devarapalli, G. Lal, C. Reddy, J. Am. Chem. Soc. 2016, 138, 13561–13567.
- 15
- 15aD. Tu, J. Zhang, Y. Zhang, H. Sung, L. Liu, R. Kwok, J. Lam, I. Williams, H. Yan, B. Tang, J. Am. Chem. Soc. 2021, 143, 11820–11827;
- 15bM. Annadhasan, A. Agrawal, S. Bhunia, V. Pradeep, S. Zade, C. Reddy, R. Chandrasekar, Angew. Chem. Int. Ed. 2020, 59, 13852–13858; Angew. Chem. 2020, 132, 13956–13962.
- 16Deposition numbers 2213903 (TPhE) and 2213903 (BThP) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.