Ag22 Nanoclusters with Thermally Activated Delayed Fluorescence Protected by Ag/Cyanurate/Phosphine Metallamacrocyclic Monolayers through In-Situ Ligand Transesterification
Zhi-Rui Yuan
Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353 People's Republic of China
Search for more papers by this authorDr. Zhi Wang
School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100 People's Republic of China
Search for more papers by this authorBao-Liang Han
School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100 People's Republic of China
Search for more papers by this authorCheng-Kai Zhang
School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100 People's Republic of China
Search for more papers by this authorShan-Shan Zhang
School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100 People's Republic of China
Search for more papers by this authorZhen-Yu Zhu
Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353 People's Republic of China
Search for more papers by this authorJiu-Hong Yu
Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353 People's Republic of China
Search for more papers by this authorProf. Tian-Duo Li
Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353 People's Republic of China
Search for more papers by this authorCorresponding Author
Dr. Ying-Zhou Li
Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353 People's Republic of China
Search for more papers by this authorProf. Chen-Ho Tung
School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Di Sun
School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100 People's Republic of China
Search for more papers by this authorZhi-Rui Yuan
Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353 People's Republic of China
Search for more papers by this authorDr. Zhi Wang
School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100 People's Republic of China
Search for more papers by this authorBao-Liang Han
School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100 People's Republic of China
Search for more papers by this authorCheng-Kai Zhang
School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100 People's Republic of China
Search for more papers by this authorShan-Shan Zhang
School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100 People's Republic of China
Search for more papers by this authorZhen-Yu Zhu
Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353 People's Republic of China
Search for more papers by this authorJiu-Hong Yu
Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353 People's Republic of China
Search for more papers by this authorProf. Tian-Duo Li
Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353 People's Republic of China
Search for more papers by this authorCorresponding Author
Dr. Ying-Zhou Li
Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353 People's Republic of China
Search for more papers by this authorProf. Chen-Ho Tung
School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Di Sun
School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100 People's Republic of China
Search for more papers by this authorGraphical Abstract
Four isostructural Ag22 nanoclusters protected by a metallamacrocyclic monolayer were synthesized in high yields by in-situ ligand formation strategy. The high-electron-affinity triazine-based cyanurate ligands endow the clusters with unique core-shell interfacial bonding structure and donor-acceptor type electronic structure, resulting in the first mixed valence Ag0/I nanocluster with thermally activated delayed fluorescence (TADF) characteristic.
Abstract
The composition of protection monolayer exerts great influence on the molecular and electronic structures of atomically precise monolayer protected metal nanoclusters. Four isostructural Ag/cyanurate/phosphine metallamacrocyclic monolayer protected Ag22 nanoclusters are synthesized by kinetically controlled in-situ ligand formation-driven strategy. These eight-electron superatomic silver nanoclusters feature an unprecedented interfacial bonding structure with diverse E-Ag (E=O/N/P/Ag) interactions between the Ag13 core and metallamacrocyclic monolayer, and displays thermally activated delayed fluorescence (TADF), benefiting from their distinct donor-acceptor type electronic structures. This work not only unmasks a new core-shell interface involving cyanurate ligand but also underlines the significance of high-electron-affinity N-heterocyclic ligand in synthesizing TADF metal nanoclusters. This is the first mixed valence Ag0/I nanocluster with TADF characteristic.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202211628-sup-0001-misc_information.pdf14.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1I. Chakraborty, T. Pradeep, Chem. Rev. 2017, 117, 8208–8271.
- 2Y. Z. Li, R. Ganguly, K. Y. Hong, Y. X. Li, M. E. Tessensohn, R. Webster, W. K. Leong, Chem. Sci. 2018, 9, 8723–8730.
- 3H. Shen, G. C. Deng, S. Kaappa, T. D. Tan, Y. Z. Han, S. Malola, S. C. Lin, B. K. Teo, H. Hakkinen, N. F. Zheng, Angew. Chem. Int. Ed. 2019, 58, 17731–17735; Angew. Chem. 2019, 131, 17895–17899.
- 4R. Jin, G. Li, S. Sharma, Y. Li, X. Du, Chem. Rev. 2021, 121, 567–648.
- 5X. Kang, M. Z. Zhu, Chem. Soc. Rev. 2019, 48, 2422–2457.
- 6X. Liu, W. W. Xu, X. Y. Huang, E. D. Wang, X. Cai, Y. Zhao, J. Li, M. Xiao, C. F. Zhang, Y. Gao, W. P. Ding, Y. Zhu, Nat. Commun. 2020, 11, 3349.
- 7Y. X. Du, H. T. Sheng, D. Astruc, M. Z. Zhu, Chem. Rev. 2020, 120, 526–622.
- 8K. Xiao, Y. Xue, B. Yang, L. Zhao, CCS Chem. 2021, 3, 555–565.
- 9S. Takano, T. Tsukuda, J. Am. Chem. Soc. 2021, 143, 1683–1698.
- 10Q. F. Yao, Z. N. Wu, Z. H. Liu, Y. Z. Lin, X. Yuan, J. P. Xie, Chem. Sci. 2021, 12, 99–127.
- 11J. Z. Yan, J. Zhang, X. M. Chen, S. Malola, B. Zhou, E. Selenius, X. M. Zhang, P. Yuan, G. C. Deng, K. L. Liu, H. F. Su, B. K. Teo, H. Hakkinen, L. S. Zheng, N. F. Zheng, Natl. Sci. Rev. 2018, 5, 694–702.
- 12Z.-H. Pan, C.-L. Deng, Z. Wang, J.-Q. Lin, G.-G. Luo, D. Sun, CrystEngComm 2020, 22, 3736–3748.
- 13Z. Wang, R. K. Gupta, G. G. Luo, D. Sun, Chem. Rec. 2020, 20, 389–402.
- 14M. Zhu, E. Lanni, N. Garg, M. E. Bier, R. Jin, J. Am. Chem. Soc. 2008, 130, 1138–1139.
- 15T. U. B. Rao, B. Nataraju, T. Pradeep, J. Am. Chem. Soc. 2010, 132, 16304–16307.
- 16Z. Wu, M. A. MacDonald, J. Chen, P. Zhang, R. Jin, J. Am. Chem. Soc. 2011, 133, 9670–9673.
- 17W.-D. Si, Y.-Z. Li, S.-S. Zhang, S. Wang, L. Feng, Z.-Y. Gao, C.-H. Tung, D. Sun, ACS Nano 2021, 15, 16019–16029.
- 18Y. Yu, X. Chen, Q. Yao, Y. Yu, N. Yan, J. Xie, Chem. Mater. 2013, 25, 946–952.
- 19A. W. Cook, T.-A. D. Nguyen, W. R. Buratto, G. Wu, T. W. Hayton, Inorg. Chem. 2016, 55, 12435–12440.
- 20F. Hu, J. J. Li, Z. J. Guan, S. F. Yuan, Q. M. Wang, Angew. Chem. Int. Ed. 2020, 59, 5312–5315; Angew. Chem. 2020, 132, 5350–5353.
- 21X. M. Zhang, Coord. Chem. Rev. 2005, 249, 1201–1219.
- 22X. J. Kong, T. He, Y. Z. Zhang, X. Q. Wu, S. N. Wang, M. M. Xu, G. R. Si, J. R. Li, Chem. Sci. 2019, 10, 3949–3955.
- 23A. Heuer-Jungemann, N. Feliu, I. Bakaimi, M. Hamaly, A. Alkilany, I. Chakraborty, A. Masood, M. F. Casula, A. Kostopoulou, E. Oh, K. Susumu, M. H. Stewart, I. L. Medintz, E. Stratakis, W. J. Parak, A. G. Kanaras, Chem. Rev. 2019, 119, 4819–4880.
- 24W. Han, P. Liu, M. Zheng, X. C. Zeng, W. W. Xu, J. Phys. Chem. Lett. 2021, 12, 3006–3013.
- 25S. F. Yuan, P. Li, Q. Tang, X. K. Wan, Z. A. Nan, D. E. Jiang, Q. M. Wang, Nanoscale 2017, 9, 11405–11409.
- 26Y. Yang, T. Jia, Y. Z. Han, Z. A. Nan, S. F. Yuan, F. L. Yang, D. Sun, Angew. Chem. Int. Ed. 2019, 58, 12280–12285; Angew. Chem. 2019, 131, 12408–12413.
- 27X. T. Shen, X. L. Ma, Q. L. Ni, M. X. Ma, L. C. Gui, C. Hou, R. B. Hou, X. J. Wang, Nanoscale 2018, 10, 515–519.
- 28X. T. Yuan, C. F. Sun, X. H. Li, S. Malola, B. K. Teo, H. Hakkinen, L. S. Zheng, N. F. Zheng, J. Am. Chem. Soc. 2019, 141, 11905–11911.
- 29Z. Wang, H. T. Sun, M. Kurmoo, Q. Y. Liu, G. L. Zhuang, Q. Q. Zhao, X. P. Wang, C. H. Tung, D. Sun, Chem. Sci. 2019, 10, 4862–4867.
- 30K. G. Liu, X. M. Gao, T. Y. Liu, M. L. Hu, D. E. Jiang, J. Am. Chem. Soc. 2020, 142, 16905–16909.
- 31T. Y. Liu, D. E. Jiang, J. Chem. Phys. 2021, 155, 16905–16909.
- 32S. F. Yuan, Z. J. Guan, W. D. Liu, Q. M. Wang, Nat. Commun. 2019, 10, 4032.
- 33Z. D. Chang, X. Jing, C. He, X. Liu, C. Y. Duan, ACS Catal. 2018, 8, 1384–1391.
- 34K. J. Kang, F. Liang, X. H. Meng, J. Tang, T. X. Zeng, M. J. Xia, Z. S. Lin, W. L. Yin, K. Bin, Chem. Commun. 2020, 56, 12534–12537.
- 35D. D. Wang, F. Liang, X. Y. Zhang, Z. G. Hu, Y. C. Wu, Cryst. Growth Des. 2021, 21, 2348–2354.
- 36Y. J. Li, W. R. Cui, Q. Q. Jiang, Q. Wu, R. P. Liang, Q. X. Luo, J. D. Qiu, Nat. Commun. 2021, 12, 4735.
- 37J. X. Wu, P. P. Bag, Y. T. Xu, L. Gong, C. T. He, X. M. Chen, J. P. Zhang, Adv. Mater. 2021, 33, 2007368–2007374.
- 38Deposition numbers 2160075 (Ag22-Et), 2160076 (Ag22-Me), 2160077 (Ag22-Pr), 2160078 (Ag22-iPr), 2191066 (Ag4-Et), 2191067 (Ag4-Me) contain the supplementary crystallographic data for this article. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 39M. Farshad, D. Suvlu, J. C. Rasaiah, J. Phys. Chem. C 2019, 123, 29954–29963.
- 40M. X. Ma, X. L. Ma, G. M. Liang, X. T. Shen, Q. L. Ni, L. C. Gui, X. J. Wang, S. Y. Huang, S. M. Li, J. Am. Chem. Soc. 2021, 143, 13731–13737.
- 41W. J. Zhang, Z. Liu, K. P. Song, C. M. Aikens, S. S. Zhang, Z. Wang, C. H. Tung, D. Sun, Angew. Chem. Int. Ed. 2021, 60, 4231–4237; Angew. Chem. 2021, 133, 4277–4283.
- 42D. M. P. Mingos, Dalton Trans. 2015, 44, 6680–6695.
- 43L. L. Liu, Y. B. Song, H. B. Chong, S. Yang, J. Xiang, S. Jin, X. Kang, J. Zhang, H. Z. Yu, M. Z. Zhu, Nanoscale 2016, 8, 1407–1412.
- 44S. Yang, J. S. Chai, Y. Lv, T. Chen, S. X. Wang, H. Z. Yu, M. Z. Zhu, Chem. Commun. 2018, 54, 12077–12080.
- 45B. Zhang, J. Chen, Y. Cao, O. J. H. Chai, J. Xie, Small 2021, 17, 2004381.
- 46R. C. Zou, S. P. He, X. Kang, S. Chen, H. Z. Yu, S. Jin, D. Astruc, M. Z. Zhu, Chem. Sci. 2021, 12, 3660–3667.
- 47T. Higaki, Q. Li, M. Zhou, S. Zhao, Y. W. Li, S. T. Li, R. C. Jin, Acc. Chem. Res. 2018, 51, 2764–2773.
- 48S. S. Zhang, Y. Z. Li, L. Feng, Q. W. Xue, Z. Y. Gao, C. H. Tung, D. Sun, Nano Res. 2021, 14, 3343–3351.
- 49U. Létinois-Halbes, P. Pale, S. Berger, Magn. Reson. Chem. 2004, 42, 831–834.
- 50Z. Abedin-Siddique, T. Ohno, K. Nozaki, Inorg. Chem. 2004, 43, 663–673.
- 51Z. K. Wu, R. C. Jin, Nano Lett. 2010, 10, 2568–2573.
- 52T. Chen, S. Yang, J. Chai, Y. Song, J. Fan, B. Rao, H. Sheng, H. Yu, M. Zhu, Sci. Adv. 2017, 3, e1700956.
- 53Z. Wu, Q. Yao, O. J. H. Chai, N. Ding, W. Xu, S. Zang, J. Xie, Angew. Chem. Int. Ed. 2020, 59, 9934–9939; Angew. Chem. 2020, 132, 10020–10025.
- 54A. Nag, P. Chakraborty, M. Bodiuzzaman, T. Ahuja, S. Antharjanam, T. Pradeep, Nanoscale 2018, 10, 9851–9855.
- 55Z. Xie, P. Sun, Z. Wang, H. Li, L. Yu, D. Sun, M. Chen, Y. Bi, X. Xin, J. Hao, Angew. Chem. Int. Ed. 2020, 59, 9922–9927; Angew. Chem. 2020, 132, 10008–10013.
- 56Y. Tao, K. Yuan, T. Chen, P. Xu, H. H. Li, R. F. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater. 2014, 26, 7931–7958.
- 57X. S. Han, X. Q. Luan, H. F. Su, J. J. Li, S. F. Yuan, Z. Lei, Y. Pei, Q. M. Wang, Angew. Chem. Int. Ed. 2020, 59, 2309–2312; Angew. Chem. 2020, 132, 2329–2332.
- 58L. Zhang, K. W. Cheah, Sci. Rep. 2018, 8, 8832–8837.
- 59L. L. M. Zhang, G. D. Zhou, G. Q. Zhou, H. K. Lee, N. Zhao, O. V. Prezhdo, T. C. W. Mak, Chem. Sci. 2019, 10, 10122–10128.
- 60Z. Han, X. Y. Dong, P. Luo, S. Li, Z. Y. Wang, S. Q. Zang, T. C. W. Mak, Sci. Adv. 2020, 6, eaay0107.