Built-in Electric Field Triggered Interfacial Accumulation Effect for Efficient Nitrate Removal at Ultra-Low Concentration and Electroreduction to Ammonia
Wu-Ji Sun
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorProf. Hao-Qing Ji
College of energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 China
Search for more papers by this authorLan-Xin Li
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorHao-Yu Zhang
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorZhen-Kang Wang
College of energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 China
Search for more papers by this authorCorresponding Author
Prof. Jing-Hui He
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jian-Mei Lu
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorWu-Ji Sun
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorProf. Hao-Qing Ji
College of energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 China
Search for more papers by this authorLan-Xin Li
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorHao-Yu Zhang
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorZhen-Kang Wang
College of energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 China
Search for more papers by this authorCorresponding Author
Prof. Jing-Hui He
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jian-Mei Lu
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorGraphical Abstract
An electrocatalyst is created by stacking CuCl (111) and rutile TiO2 (110) layers together. A built-in electric field induced from the electron transfer from TiO2 to CuCl (CuCl_BEF) is thus formed, which triggers interfacial accumulation of NO3− ions around the electrocatalyst. A NH3 product selectivity of 98.6 %, a low NO2− production of <0.6 %, and mass-specific ammonia production rate of 64.4 h−1 is achieved.
Abstract
A built-in electric field in electrocatalyst can significantly accumulate higher concentration of NO3− ions near electrocatalyst surface region, thus facilitating mass transfer for efficient nitrate removal at ultra-low concentration and electroreduction reaction (NO3RR). A model electrocatalyst is created by stacking CuCl (111) and rutile TiO2 (110) layers together, in which a built-in electric field induced from the electron transfer from TiO2 to CuCl (CuCl_BEF) is successfully formed . This built-in electric field effectively triggers interfacial accumulation of NO3− ions around the electrocatalyst. The electric field also raises the energy of key reaction intermediate *NO to lower the energy barrier of the rate determining step. A NH3 product selectivity of 98.6 %, a low NO2− production of <0.6 %, and mass-specific ammonia production rate of 64.4 h−1 is achieved, which are all the best among studies reported at 100 mg L−1 of nitrate concentration to date.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202109785-sup-0001-misc_information.pdf2.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Su, D. Han, G. Zhu, H. Xu, W. Luo, L. Wang, W. Jiang, A. Dong, J. Yang, Nano Lett. 2019, 19, 5423–5430.
- 2
- 2aUSEPA, Vol. I: Human Health Evaluation Manual (Part A) EPA/540/1-89/002, http://www.epa.gov/superfund/programs/risk/ragsa/index.htm, Washington, DC, 1989;
- 2bUSEPA, Risk assessment guidance for superfund, Vol. 1, Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC, 1989.
- 3F. Haber, R. Le Rossignol, Z. Elektrochem. Angew. Phys. Chem. 1913, 19, 53–72.
- 4
- 4aG.-F. Chen, X. Cao, S. Wu, X. Zeng, L.-X. Ding, M. Zhu, H. Wang, J. Am. Chem. Soc. 2017, 139, 9771–9774;
- 4bZ. J. Schiffer, K. Manthiram, Joule 2017, 1, 10–14;
- 4cJ. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F. Schneider, R. R. Schrock, Science 2018, 360, eaar6611;
- 4dB. H. R. Suryanto, H.-L. Du, D. Wang, J. Chen, A. N. Simonov, D. R. MacFarlane, Nat. Catal. 2019, 2, 290–296.
- 5A. Stirling, I. Papai, J. Mink, D. R. Salahub, J. Chem. Phys. 1994, 100, 2910–2923.
- 6S. Giddey, S. P. S. Badwal, A. Kulkarni, Int. J. Hydrogen Energy 2013, 38, 14576–14594.
- 7
- 7aG.-F. Chen, Y. Yuan, H. Jiang, S.-Y. Ren, L.-X. Ding, L. Ma, T. Wu, J. Lu, H. Wang, Nat. Energy 2020, 5, 605–613;
- 7bL. Mattarozzi, S. Cattarin, N. Comisso, R. Gerbasi, P. Guerriero, M. Musiani, L. Vazquez-Gomez, E. Verlato, J. Electrochem. Soc. 2015, 162, D236–D241;
- 7cY. Wang, A. Xu, Z. Wang, L. Huang, J. Li, F. Li, J. Wicks, M. Luo, D.-H. Nam, C.-S. Tan, Y. Ding, J. Wu, Y. Lum, D. Cao-Thang, D. Sinton, G. Zheng, E. H. Sargent, J. Am. Chem. Soc. 2020, 142, 5702–5708;
- 7dJ. Li, G. Zhan, J. Yang, F. Quan, C. Mao, Y. Liu, B. Wang, F. Lei, L. Li, A. W. M. Chan, L. Xu, Y. Shi, Y. Du, W. Hao, P. K. Wong, J. Wang, S.-X. Dou, L. Zhang, J. C. Yu, J. Am. Chem. Soc. 2020, 142, 7036–7046;
- 7eY. Wang, W. Zhou, R. Jia, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 2020, 59, 5350–5354; Angew. Chem. 2020, 132, 5388–5392;
- 7fR. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu, B. Zhang, ACS Catal. 2020, 10, 3533–3540;
- 7gY. Wang, C. Liu, B. Zhang, Y. Yu, Sci. China Mater. 2020, 63, 2530–2538;
- 7hM. Chen, J. Bi, X. Huang, T. Wang, Z. Wang, H. Hao, Chemosphere 2021, 278, 130386;
- 7iC. H. Wang, Z. Y. Liu, T. Hu, J. S. Li, L. Q. Dong, F. Du, C. M. Li, C. X. Guo, ChemSusChem 2021, 14, 1825–1829.
- 8
- 8aC. A. Clark, C. P. Reddy, H. Xu, K. N. Heck, G. Luo, T. P. Senftle, M. S. Wong, ACS Catal. 2020, 10, 494–509;
- 8bD. P. Butcher, Jr., A. A. Gewirth, Nano Energy 2016, 29, 457–465.
- 9Y. Lan, J. Chen, H. Zhang, W.-x. Zhang, J. Yang, J. Mater. Chem. A 2020, 8, 15853–15863.
- 10M. C. Wu, P. J. Moller, Chem. Phys. Lett. 1990, 171, 136–140.
- 11Y. Yu, C. Wang, Y. Yu, Y. Wang, B. Zhang, Sci. China. Chem. 2020, 63, 1469–1476.
- 12
- 12aP. Kozyra, M. Radon, J. Datka, E. Broclawik, Struct. Chem. 2012, 23, 1349–1356;
- 12bW. F. Schneider, K. C. Hass, R. Ramprasad, J. B. Adams, J. Phys. Chem. B 1998, 102, 3692–3705.
- 13
- 13aP. Li, M. Wang, X. Duan, L. Zheng, X. Cheng, Y. Zhang, Y. Kuang, Y. Li, Q. Ma, Z. Feng, W. Liu, X. Sun, Nat. Commun. 2019, 10, 1711;
- 13bL. Tan, S.-M. Xu, Z. Wang, Y. Xu, X. Wang, X. Hao, S. Bai, C. Ning, Y. Wang, W. Zhang, Y. K. Jo, S.-J. Hwang, X. Cao, X. Zheng, H. Yan, Y. Zhao, H. Duan, Y.-F. Song, Angew. Chem. Int. Ed. 2019, 58, 11860–11867; Angew. Chem. 2019, 131, 11986–11993.
- 14
- 14aS. Garcia-Segura, M. Lanzarini-Lopes, K. Hristovski, P. Westerhoff, Appl. Catal. B 2018, 236, 546–568;
- 14bS. Wasmus, E. J. Vasini, M. Krausa, H. T. Mishima, W. Vielstich, Electrochim. Acta 1994, 39, 23–31.
- 15M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248–4253.
- 16W.-J. Sun, Y.-Y. Zhao, X.-F. Cheng, J.-H. He, J.-M. Lu, ACS Appl. Mater. Interfaces 2020, 12, 9865–9871.
- 17
- 17aZ. Wang, Z. Xu, H. Huang, X. Chu, Y. Xie, D. Xiong, C. Yan, H. Zhao, H. Zhang, W. Yang, ACS Nano 2020, 14, 4916–4924;
- 17bJ. Becher, D. F. Sanchez, D. E. Doronkin, D. Zengel, D. M. Meira, S. Pascarelli, J.-D. Grunwaldt, T. L. Sheppard, Nat. Catal. 2021, 4, 46–53;
- 17cM. Croft, D. Sills, M. Greenblatt, C. Lee, S. W. Cheong, K. V. Ramanujachary, D. Tran, Phys. Rev. B 1997, 55, 8726–8732.
- 18A. S. W. Wong, R. G. Krishnan, G. Sarkar, J. Vac. Sci. Technol. 2000, 18, 1619–1631.
- 19
- 19aH. Cheng, L.-X. Ding, G.-F. Chen, L. Zhang, J. Xue, H. Wang, Adv. Mater. 2018, 30, 1803694;
- 19bS. Z. Andersen, V. Colic, S. Yang, J. A. Schwalbe, A. C. Nielander, J. M. McEnaney, K. Enemark-Rasmussen, J. G. Baker, A. R. Singh, B. A. Rohr, M. J. Statt, S. J. Blair, S. Mezzavilla, J. Kibsgaard, P. C. K. Vesborg, M. Cargnello, S. F. Bent, T. F. Jaramillo, I. E. L. Stephens, J. K. Norskov, I. Chorkendorff, Nature 2019, 574, E5–E5.
- 20H. Cheng, P. Cui, F. Wang, L.-X. Ding, H. Wang, Angew. Chem. Int. Ed. 2019, 58, 15541–15547; Angew. Chem. 2019, 131, 15687–15693.
Citing Literature
October 11, 2021
Pages 22933-22939