Transfer, Amplification, Storage, and Complete Self-Recovery of Supramolecular Chirality in an Achiral Polymer System
Tengfei Miao
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorXiaoxiao Cheng
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorHaotian Ma
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorZixiang He
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorProf. Zhengbiao Zhang
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorProf. Nianchen Zhou
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Wei Zhang
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorProf. Xiulin Zhu
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorTengfei Miao
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorXiaoxiao Cheng
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorHaotian Ma
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorZixiang He
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorProf. Zhengbiao Zhang
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorProf. Nianchen Zhou
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Wei Zhang
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorProf. Xiulin Zhu
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorGraphical Abstract
Abstract
Supramolecular chirality and its complete self-recovery ability are highly mystical in nature and biological systems, which remains a major challenge today. Herein, we demonstrate that partially cross-linked azobenzene (Azo) units can be employed as the potential chiral trigger to fully heal the destroyed helical superstructure in achiral nematic polymer system. Combining the self-assembly of Azo units and terminal hydroxyl groups in polymer side chains allows the vapor-induced chiral nematic phase and covalent fixation of the superstructure via acetal reaction. The induced helical structure of Azo units can be stored by inter-chain cross-linking, even after removal of the chiral source. Most interestingly, the stored chiral information can trigger perfect chiral self-recovery (CSR) behavior after being destroyed by UV light, heat, and solvents. The results pave a new way for producing novel chiroptical materials with reversible chirality from achiral sources.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202107992-sup-0001-misc_information.pdf5.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui, Z. A. Bao, Nat. Chem. 2013, 5, 1042–1048;
- 1bR. Han, K. P. Campbell, Curr. Opin. Cell Biol. 2007, 19, 409–416.
- 2V. García-López, F. Chen, L. G. Nilewski, G. Duret, A. Aliyan, A. B. Kolomeisky, J. T. Robinson, G. Wang, R. Pal, J. M. Tour, Nature 2017, 548, 567–572.
- 3M. Schliwa, G. Woehlke, Nature 2003, 422, 759–765.
- 4
- 4aE. Yashima, K. Maeda, H. Iida, Y. Furusho, K. Nagai, Chem. Rev. 2009, 109, 6102–6211;
- 4bK. Akagi, Chem. Rev. 2009, 109, 5354–5401;
- 4cD. Lee, Y. J. Jin, H. Kim, N. Suzuki, M. Fujiki, T. Sakaguchi, S. K. Kim, W. E. Lee, G. Kwak, Macromolecules 2012, 45, 5379–5386;
- 4dS. Huang, Y. X. Chen, S. D. Ma, H. F. Yu, Angew. Chem. Int. Ed. 2018, 57, 12524–12528; Angew. Chem. 2018, 130, 12704–12708;
- 4eJ. Yuan, M. H. Liu, J. Am. Chem. Soc. 2003, 125, 5051–5056;
- 4fJ. Sun, Y. Li, F. Yan, C. Liu, Y. Sang, F. Tian, Q. Feng, P. Duan, L. Zhang, X. Shi, B. Ding, M. Liu, Nat. Commun. 2018, 9, 2599.
- 5L. Wang, L. Yin, W. Zhang, X. Zhu, M. Fujiki, J. Am. Chem. Soc. 2017, 139, 13218–13226.
- 6
- 6aY. Zhao, N. A. A. Rahirn, Y. J. Xia, M. Fujiki, B. Song, Z. B. Zhang, W. Zhang, X. L. Zhu, Macromolecules 2016, 49, 3214–3221;
- 6bP. Rizzo, T. Montefusco, G. Guerra, J. Am. Chem. Soc. 2011, 133, 9872–9877.
- 7
- 7aM. Liu, L. Zhang, T. Wang, Chem. Rev. 2015, 115, 7304–7397;
- 7bH. Miyake, H. Tsukube, Chem. Soc. Rev. 2012, 41, 6977–6991;
- 7cY. Sun, S. Li, Z. X. Zhou, M. L. Saha, S. Datta, M. M. Zhang, X. Z. Yan, D. M. Tian, H. Wang, L. Wang, X. P. Li, M. H. Liu, H. B. Li, P. J. Stang, J. Am. Chem. Soc. 2018, 140, 3257–3263.
- 8A. Gopal, M. Hifsudheen, S. Furumi, M. Takeuchi, A. Ajayaghosh, Angew. Chem. Int. Ed. 2012, 51, 10505–10509; Angew. Chem. 2012, 124, 10657–10661.
- 9C. Kulkarni, P. A. Korevaar, K. K. Bejagam, A. R. A. Palmans, E. W. Meijer, S. J. George, J. Am. Chem. Soc. 2017, 139, 13867–13875.
- 10T. Nishikawa, Y. Nagata, M. Suginome, ACS Macro Lett. 2017, 6, 431–435.
- 11
- 11aE. Yashima, K. Maeda, Y. Okamoto, Nature 1999, 399, 449–451;
- 11bK. Maeda, K. Morino, Y. Okamoto, T. Sato, E. Yashima, J. Am. Chem. Soc. 2004, 126, 4329–4342.
- 12K. Shimomura, T. Ikai, S. Kanoh, E. Yashima, K. Maeda, Nat. Chem. 2014, 6, 429–434.
- 13
- 13aZ. L. Yu, F. Tantakitti, T. Yu, L. C. Palmer, G. C. Schatz, S. I. Stupp, Science 2016, 351, 497–502;
- 13bJ. Wu, L. Chen, J. Wu, W. Li, K. Liu, T. Masuda, A. Zhang, Chem. Asian J. 2018, 13, 3647–3652;
- 13cJ. Kim, J. Lee, W. Y. Kim, H. Kim, S. Lee, H. C. Lee, Y. S. Lee, M. Seo, S. Y. Kim, Nat. Commun. 2015, 6, 6959;
- 13dY. Xu, G. Yang, H. Xia, G. Zou, Q. Zhang, J. Gao, Nat. Commun. 2014, 5, 5050;
- 13eC. He, G. Yang, Y. Kuai, S. Shan, L. Yang, J. Hu, D. Zhang, Q. Zhang, G. Zou, Nat. Commun. 2018, 9, 5117;
- 13fK. Watanabe, H. Iida, K. Akagi, Adv. Mater. 2012, 24, 6451–6456.
- 14A. J. Wilson, M. Masuda, R. P. Sijbesma, E. W. Meijer, Angew. Chem. Int. Ed. 2005, 44, 2275–2279; Angew. Chem. 2005, 117, 2315–2319.
- 15
- 15aY. Wang, Q. Li, Adv. Mater. 2012, 24, 1926–1945;
- 15bZ. G. Zheng, Y. Q. Lu, Q. Li, Adv. Mater. 2020, 32, 1905318;
- 15cH. K. Bisoyi, T. J. Bunning, Q. Li, Adv. Mater. 2018, 30, 1706512;
- 15dR. M. Tejedor, M. Millaruelo, L. Oriol, J. L. Serrano, R. Alcala, F. J. Rodriguez, B. Villacampa, J. Mater. Chem. 2006, 16, 1674–1680.
- 16
- 16aS. Iamsaard, S. J. Asshoff, B. Matt, T. Kudernac, J. J. L. M. Cornelissen, S. P. Fletcher, N. Katsonis, Nat. Chem. 2014, 6, 229–235;
- 16bY. Sawa, F. Ye, K. Urayama, T. Takigawa, V. Gimenez-Pinto, R. L. B. Selinger, J. V. Selinger, Proc. Natl. Acad. Sci. USA 2011, 108, 6364–6368.
- 17H. M. D. Bandara, S. C. Burdette, Chem. Soc. Rev. 2012, 41, 1809–1825.
- 18
- 18aZ. X. Cheng, S. D. Ma, Y. H. Zhang, S. Huang, Y. X. Chen, H. F. Yu, Macromolecules 2017, 50, 8317–8324;
- 18bR. Kani, Y. Nakano, S. Hayase, Macromolecules 1995, 28, 1773–1777;
- 18cZ. Hanif, D. Choi, M. Z. Tariq, M. La, S. J. Park, ACS Macro Lett. 2020, 9, 146–151.
- 19X. Tong, L. Cui, Y. Zhao, Macromolecules 2004, 37, 3101–3112.
- 20
- 20aY. Nakano, Y. Liu, M. Fujiki, Polym. Chem. 2010, 1, 460–469;
- 20bY. Nakano, F. Ichiyanagi, M. Naito, Y. G. Yang, M. Fujiki, Chem. Commun. 2012, 48, 6636–6638.
- 21R. M. Tejedor, L. Oriol, J. L. Serrano, F. P. Urena, J. J. L. Gonzalez, Adv. Funct. Mater. 2007, 17, 3486–3492.
- 22B. A. San Jose, J. Yan, K. Akagi, Angew. Chem. Int. Ed. 2014, 53, 10641–10644; Angew. Chem. 2014, 126, 10817–10820.
- 23
- 23aX. X. Cheng, T. F. Miao, L. Yin, Y. J. Ji, Y. Y. Li, Z. B. Zhang, W. Zhang, X. L. Zhu, Angew. Chem. Int. Ed. 2020, 59, 9669–9677; Angew. Chem. 2020, 132, 9756–9764;
- 23bW. Zhang, K. Yoshida, M. Fujiki, X. L. Zhu, Macromolecules 2011, 44, 5105–5111.
- 24T. Ikeda, O. Tsutsumi, Science 1995, 268, 1873–1875.