Unveiling the Photoinduced Electron-Donating Character of MoS2 in Covalently Linked Hybrids Featuring Perylenediimide
Ioanna K. Sideri
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
Search for more papers by this authorYoungwoo Jang
Department of Chemistry, University of North Texas, 1155 Union Circle, 305070, Denton, TX, 76203-5017 USA
Search for more papers by this authorJose Garcés-Garcés
Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
Search for more papers by this authorProf. Dr. Ángela Sastre-Santos
Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
Search for more papers by this authorDr. Ruben Canton-Vitoria
Department of Chemistry, Nagoya University, Nagoya, 464-8602 Japan
Search for more papers by this authorProf. Dr. Ryo Kitaura
Department of Chemistry, Nagoya University, Nagoya, 464-8602 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Fernando Fernández-Lázaro
Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
Search for more papers by this authorCorresponding Author
Prof. Dr. Francis D'Souza
Department of Chemistry, University of North Texas, 1155 Union Circle, 305070, Denton, TX, 76203-5017 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Nikos Tagmatarchis
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
Search for more papers by this authorIoanna K. Sideri
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
Search for more papers by this authorYoungwoo Jang
Department of Chemistry, University of North Texas, 1155 Union Circle, 305070, Denton, TX, 76203-5017 USA
Search for more papers by this authorJose Garcés-Garcés
Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
Search for more papers by this authorProf. Dr. Ángela Sastre-Santos
Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
Search for more papers by this authorDr. Ruben Canton-Vitoria
Department of Chemistry, Nagoya University, Nagoya, 464-8602 Japan
Search for more papers by this authorProf. Dr. Ryo Kitaura
Department of Chemistry, Nagoya University, Nagoya, 464-8602 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Fernando Fernández-Lázaro
Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
Search for more papers by this authorCorresponding Author
Prof. Dr. Francis D'Souza
Department of Chemistry, University of North Texas, 1155 Union Circle, 305070, Denton, TX, 76203-5017 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Nikos Tagmatarchis
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
Search for more papers by this authorGraphical Abstract
Abstract
The covalent functionalization of MoS2 with a perylenediimide (PDI) is reported and the study is accompanied by detailed characterization of the newly prepared MoS2-PDI hybrid material. Covalently functionalized MoS2 interfacing organic photoactive species has shown electron and/or energy accepting, energy reflecting or bi-directional electron accepting features. Herein, a rationally designed PDI, unsubstituted at the perylene core to act as electron acceptor, forces MoS2 to fully demonstrate for the first time its electron donor capabilities. The photophysical response of MoS2-PDI is visualized in an energy-level diagram, while femtosecond transient absorption studies disclose the formation of MoS2.+-PDI.− charge separated state. The tunable electronic properties of MoS2, as a result of covalently linking photoactive organic species with precise characteristics, unlock their potentiality and enable their application in light-harvesting and optoelectronic devices.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202016249-sup-0001-misc_information.pdf572.4 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. R. Ryder, J. D. Wood, S. A. Wells, M. C. Hersam, ACS Nano 2016, 10, 3900–3917;
- 1bA. Stergiou, N. Tagmatarchis, Chem. Eur. J. 2018, 24, 18246.
- 2
- 2aS. S. Chou, M. De, J. Kim, S. Byun, C. Dykstra, J. Yu, J. Huang, V. P. Dravid, J. Am. Chem. Soc. 2013, 135, 4584–4587;
- 2bQ. Ding, K. J. Czech, Y. Zhao, J. Zhai, R. J. Hamers, J. C. Wright, S. Jin, ACS Appl. Mater. Interfaces 2017, 9, 12734–12742.
- 3
- 3aR. Canton-Vitoria, Y. Sayed-Ahmad-Baraza, M. Pelaez-Fernandez, R. Arenal, C. Bittencourt, C. P. Ewels, N. Tagmatarchis, npj 2D Mater. Appl. 2017, 1, 13;
- 3bR. Canton-Vitoria, C. Stangel, N. Tagmatarchis, ACS Appl. Mater. Interfaces 2018, 10, 23476–23480.
- 4I. K. Sideri, R. Arenal, N. Tagmatarchis, ACS Mater. Lett. 2020, 2, 832–837.
- 5
- 5aS. Karunakaran, S. Pandit, B. Basu, M. De, J. Am. Chem. Soc. 2018, 140, 12634–12644;
- 5bX. S. Chu, A. Yousaf, D. O. Li, A. A. Tang, A. Debnath, D. Ma, A. A. Green, E. J. G. Santos, Q. H. Wang, Chem. Mater. 2018, 30, 2112–2128;
- 5cM. Vera-Hidalgo, E. Giovanelli, C. Navío, E. M. Perez, J. Am. Chem. Soc. 2019, 141, 3767–3771.
- 6C. Backes, N. C. Berner, Xi. Chen, P. Lafargue, P. LaPlace, M. Freeley, G. S. Duesberg, J. N. Coleman, A. R. McDonald, Angew. Chem. Int. Ed. 2015, 54, 2638–2642; Angew. Chem. 2015, 127, 2676–2680.
- 7
- 7aF. Würthner, C. R. Saha-Möller, B. Fimmel, S. Ogi, P. Leowanawat, D. Schmidt, Chem. Rev. 2016, 116, 962–1052.
- 8A. Oleson, T. Zhu, I. S. Dunn, D. Bialas, Y. Bai, W. Zhang, M. Dai, D. R. Reichman, R. Tempelaar, L. Huang, F. C. Spano, J. Phys. Chem. C 2019, 123, 20567–20578.
- 9P.-O. Schwartz, L. Biniek, E. Zaborova, B. Heinrich, M. Brinkmann, N. Leclerc, S. Méry, J. Am. Chem. Soc. 2014, 136, 5981–5992.
- 10K. M. Felter, V. M. Caselli, D. D. Günbaş, T. J. Savenije, F. C. Grozema, ACS Appl. Energy Mater. 2019, 2, 8010–8021.
- 11C. Huang, S. Barlow, S. R. Marder, J. Org. Chem. 2011, 76, 2386–2407.
- 12R. Schmidt, J. H. Oh, Y.-S. Sun, M. Deppisch, A.-M. Krause, K. Radacki, H. Braunschweig, M. Könemann, P. Erk, Z. Bao, F. Würthner, J. Am. Chem. Soc. 2009, 131, 6215–6228.
- 13G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, H. Yan, Chem. Rev. 2018, 118, 3447–3507.
- 14E. Avellanal-Zaballa, G. Durán-Sampedro, A. Prieto-Castañeda, A. R. Agarrabeitia, I. García-Moreno, I. López-Arbeloa, J. Bañuelos, M. J. Ortiz, Phys. Chem. Chem. Phys. 2017, 19, 13210–13218.
- 15
- 15aR. Canton-Vitoria, L. Vallan, E. Urriolabeitia, A. M. Benito, W. K. Maser, N. Tagmatarchis, Chem. Eur. J. 2018, 24, 10468–10474;
- 15bL. Vallan, R. Canton-Vitoria, H. B. Gobeze, Y. Jang, R. Arenal, A. M. Benito, W. K. Maser, F. D'Souza, N. Tagmatarchis, J. Am. Chem. Soc. 2018, 140, 13488–13496.
- 16
- 16aR. Canton-Vitoria, T. Scharl, A. Stergiou, A. Cadranel, R. Arenal, D. M. Guldi, N. Tagmatarchis, Angew. Chem. Int. Ed. 2020, 59, 3976–3981; Angew. Chem. 2020, 132, 4004–4009.
- 17R. Canton-Vitoria, H. B. Gobeze, V. M. Blas-Ferrando, J. Ortiz, Y. Jang, F. Fernández-Lázaro, Á. Sastre-Santos, Y. Nakanishi, H. Shinohara, F. D'Souza, N. Tagmatarchis, Angew. Chem. Int. Ed. 2019, 58, 5712–5717; Angew. Chem. 2019, 131, 5768–5773.
- 18X. Yu, A. Rahmanudin, X. A. Jeanbourquin, D. Tsokkou, N. Guijarro, N. Banerji, K. Sivula, ACS Energy Lett. 2017, 2, 524–531.
- 19G. Pagona, C. Bittencourt, R. Arenal, N. Tagmatarchis, Chem. Commun. 2015, 51, 12950–12953.
- 20S. Bae, N. Sugiyama, T. Matsuo, H. Raebiger, K.-i. Shudo, K. Ohno, Phys. Rev. Appl. 2017, 7, 024001.
- 21S. Jiménez Sandoval, D. Yang, R. F. Frindt, J. C. Irwin, Phys. Rev. B 1991, 44, 3955–3962.
- 22Z. Luo, A. Peng, H. Fu, Y. Ma, J. Yao, B. H. Loo, J. Mater. Chem. 2008, 18, 133–138.
- 23W. E. Ford, J. Photochem. 1987, 37, 189–204.
- 24S. Gan, L. Zhong, C. Engelbrekt, J. Zhang, D. Han, J. Ulstrup, Q. Chi, L. Niu, Nanoscale 2014, 6, 10516–10523.
- 25L. Wibmer, S. Lages, T. Unruh, D. M. Guldi, Adv. Mater. 2018, 30, 1706702.
- 26A. Wicklein, A. Lang, M. Muth, M. Thelakkat, J. Am. Chem. Soc. 2009, 131, 14442–14453.
- 27L. Martín-Gomis, F. Peralta-Ruiz, M. B. Thomas, F. Fernández-Lázaro, F. D'Souza, Á. Sastre-Santos, Chem. Eur. J. 2017, 23, 3863–3874.
- 28W. E. Ford, P. V. Kamat, J. Phys. Chem. 1987, 91, 6373–6380.
- 29J. J. Snellenburg, S. P. Laptenok, R. Seger, K. M. Mullen, I. H. M. van Stokkum, J. Stat. Software 2012, 49, 1–22.