Advances in Understanding Mechanisms of Perovskites and Pyrochlores as Electrocatalysts using In-Situ X-ray Absorption Spectroscopy
Dr. Joohyuk Park
Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
Present address: Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH UK
Search for more papers by this authorCorresponding Author
Prof. Jaephil Cho
Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
Search for more papers by this authorDr. Joohyuk Park
Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
Present address: Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH UK
Search for more papers by this authorCorresponding Author
Prof. Jaephil Cho
Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
Search for more papers by this authorGraphical Abstract
Ray of light: In-situ X-ray absorption spectroscopy methods for electrochemical tests have been developed to follow the changes of electron configurations and geometric local structures of metal oxides during electrocatalysis. This Minireview gives a brief introduction to recent progress in understanding catalytic mechanisms of perovskite and pyrochlore oxides by using this method.
Abstract
Metal oxides are some of the most promising candidates as electrocatalysts for electrical-energy-storage (EES) systems. Particularly, perovskite and pyrochlore oxides have been intensively investigated as bifunctional electrocatalysts because of their superior catalytic activities during the oxygen-reduction and -evolution reactions. However, the origin of the outstanding catalytic activities and structural changes of the materials are not clear, in part due to the difficulty in identification during electrocatalysis. In this Minireview, we present a critical overview of recent progress in understanding catalytic mechanisms of perovskite and pyrochlore oxides, highlighting the innovative in-situ X-ray absorption spectroscopy (XAS) analysis for electrochemical tests.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aM. Armand, J. M. Tarascon, Nature 2008, 451, 652–657;
- 1bY. Chen, S. A. Freunberger, Z. Peng, F. Bardé, P. G. Bruce, J. Am. Chem. Soc. 2012, 134, 7952–7957.
- 2
- 2aF. R. McLarnon, E. J. Cairns, J. Electrochem. Soc. 1991, 138, 645–656;
- 2bY. Li, H. Dai, Chem. Soc. Rev. 2014, 43, 5257–5275;
- 2cP. Pei, Z. Ma, K. Wang, X. Wang, M. Song, H. Xu, J. Power Sources 2014, 249, 13–20.
- 3
- 3aP. Arora, Z. Zhang, Chem. Rev. 2004, 104, 4419–4462;
- 3bJ.-S. Lee, S. T. Kim, R. Cao, N.-S. Choi, M. Liu, K. T. Lee, J. Cho, Adv. Energy Mater. 2011, 1, 34–50.
- 4
- 4aM. K. Debe, Nature 2012, 486, 43–51;
- 4bZ.-L. Wang, D. Xu, J.-J. Xu, X.-B. Zhang, Chem. Soc. Rev. 2014, 43, 7746–7786.
- 5
- 5aY.-C. Lu, Z. Xu, H. A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, J. Am. Chem. Soc. 2010, 132, 12170–12171;
- 5bD. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo, H. D. Abruña, Nat. Mater. 2013, 12, 81.
- 6G. Nam, J. Park, M. Choi, P. Oh, S. Park, M. G. Kim, N. Park, J. Cho, J.-S. Lee, ACS Nano 2015, 9, 6493–6501.
- 7
- 7aF. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J.-P. Dodelet, G. Wu, H. T. Chung, C. M. Johnston, P. Zelenay, Energy Environ. Sci. 2011, 4, 114;
- 7bW. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich, Y. Shao-Horn, Energy Environ. Sci. 2015, 8, 1404–1427.
- 8
- 8aJ.-I. Jung, M. Risch, S. Park, M. G. Kim, G. Nam, H.-Y. Jeong, Y. Shao-Horn, J. Cho, Energy Environ. Sci. 2016, 9, 176–183;
- 8bA. Grimaud, A. Demortière, M. Saubanère, W. Dachraoui, M. Duchamp, M.-L. Doublet, J.-M. Tarascon, Nat. Energy 2016, 2, 16189.
- 9
- 9aK. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760–764;
- 9bJ. Zhang, Z. Zhao, Z. Xia, L. Dai, Nat. Nanotechnol. 2015, 10, 444–452.
- 10
- 10aJ. Park, Dissertation, Graduate School of UNIST 2017;
- 10bJ.-I. Jung, H. Y. Jeong, J.-S. Lee, M. G. Kim, J. Cho, Angew. Chem. Int. Ed. 2014, 53, 4582–4586; Angew. Chem. 2014, 126, 4670–4674.
- 11M. V. ten Kortenaar, J. F. Vente, D. J. W. Ijdo, S. Müller, R. Kötz, J. Power Sources 1995, 56, 51–60.
- 12
- 12aJ. B. Goodenough, R. Manoharan, M. Paranthaman, J. Am. Chem. Soc. 1990, 112, 2076–2082;
- 12bA. K. Shukla, A. M. Kannan, M. S. Hegde, J. Gopalakrishnan, J. Power Sources 1991, 35, 163–173.
- 13
- 13aJ. Suntivich, W. T. Hong, Y.-L. Lee, J. M. Rondinelli, W. Yang, J. B. Goodenough, B. Dabrowski, J. W. Freeland, Y. Shao-Horn, J. Phys. Chem. C 2014, 118, 1856–1863;
- 13bB. Seo, Y. J. Sa, J. Woo, K. Kwon, J. Park, T. J. Shin, H. Y. Jeong, S. H. Joo, ACS Catal. 2016, 6, 4347–4355.
- 14J. Jae-Il, J. H. Young, K. M. Gyu, N. Gyutae, P. Joohyuk, C. Jaephil, Adv. Mater. 2015, 27, 266–271.
- 15
- 15aY. Gorlin, B. Lassalle-Kaiser, J. D. Benck, S. Gul, S. M. Webb, V. K. Yachandra, J. Yano, T. F. Jaramillo, J. Am. Chem. Soc. 2013, 135, 8525–8534;
- 15bY. J. Sa, D.-J. Seo, J. Woo, J. T. Lim, J. Y. Cheon, S. Y. Yang, J. M. Lee, D. Kang, T. J. Shin, H. S. Shin, H. Y. Jeong, C. S. Kim, M. G. Kim, T.-Y. Kim, S. H. Joo, J. Am. Chem. Soc. 2016, 138, 15046–15056;
- 15cJ. Park, M. Risch, G. Nam, M. Park, T. J. Shin, S. Park, M. G. Kim, Y. Shao-Horn, J. Cho, Energy Environ. Sci. 2017, 10, 129–136;
- 15dJ. Park, M. Park, G. Nam, M. G. Kim, J. Cho, Nano Lett. 2017, 17, 3974–3981.
- 16
- 16aF. Cheng, J. Shen, B. Peng, Y. Pan, Z. Tao, J. Chen, Nat. Chem. 2011, 3, 79–84;
- 16bY. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780–786;
- 16cF. Cheng, T. Zhang, Y. Zhang, J. Du, X. Han, J. Chen, Angew. Chem. Int. Ed. 2013, 52, 2474–2477; Angew. Chem. 2013, 125, 2534–2537.
- 17J. S. Lee, T. Lee, H. K. Song, J. Cho, B. S. Kim, Energy Environ. Sci. 2011, 4, 4148–4154.
- 18J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383–1385.
- 19J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, Y. Shao-Horn, Nat. Chem. 2011, 3, 546–550.
- 20H. Tanaka, M. Misono, Curr. Opin. Solid State Mater. Sci. 2001, 5, 381–387.
- 21E. Aleshin, R. Roy, J. Am. Ceram. Soc. 1962, 45, 18–25.
- 22M. G. Brik, A. M. Srivastava, J. Am. Ceram. Soc. 2012, 95, 1454–1460.
- 23J. Prakash, D. Tryk, W. Aldred, E. Yeager, in Electrochemistry in Transition: From the 20th to the 21st Century (Eds.: ), Springer, Boston, 1992, pp. 93–106.
10.1007/978-1-4615-9576-2_8 Google Scholar
- 24W. G. Michael, T. B. Phillip, S. B. Christina, M. M. Lauren, E. R. Efrain, D. S. Galen, S. Ram, J. Phys. Condens. Matter 2013, 25, 186004.
- 25
- 25aJ. Prakash, D. A. Tryk, W. Aldred, E. B. Yeager, J. Appl. Electrochem. 1999, 29, 1463–1469;
- 25bD. R. Modeshia, R. I. Walton, Chem. Soc. Rev. 2010, 39, 4303–4325;
- 25cK. Fujii, Y. Sato, S. Takase, Y. Shimizu, J. Electrochem. Soc. 2015, 162, F129–F135.
- 26
- 26aT. Akazawa, Y. Inaguma, T. Katsumata, K. Hiraki, T. Takahashi, J. Cryst. Growth 2004, 271, 445–449;
- 26bC. Abate, V. Esposito, K. Duncan, J. C. Nino, D. M. Gattia, E. D. Wachsman, E. Traversa, J. Am. Ceram. Soc. 2010, 93, 1970–1977;
- 26cK. Sardar, S. C. Ball, J. D. B. Sharman, D. Thompsett, J. M. Fisher, R. A. P. Smith, P. K. Biswas, M. R. Lees, R. J. Kashtiban, J. Sloan, R. I. Walton, Chem. Mater. 2012, 24, 4192–4200.
- 27S. H. Oh, L. F. Nazar, Adv. Energy Mater. 2012, 2, 903–910.
- 28S. H. Oh, R. Black, E. Pomerantseva, J. H. Lee, L. F. Nazar, Nat. Chem. 2012, 4, 1004–1010.
- 29
- 29aW. Gudat, C. Kunz, Phys. Rev. Lett. 1972, 29, 169–172;
- 29bJ. Jaklevic, J. A. Kirby, M. P. Klein, A. S. Robertson, G. S. Brown, P. Eisenberger, Solid State Commun. 1977, 23, 679–682.
- 30J. Zhou, J. Wang, Y. Hu, T. Regier, H. Wang, Y. Yang, Y. Cui, H. Dai, Chem. Commun. 2013, 49, 1765–1767.
- 31J. E. Penner-Hahn, in Comprehensive Coordination Chemistry II (Eds.: ), Pergamon, Oxford, 2003, pp. 159–186.
10.1016/B0-08-043748-6/01179-8 Google Scholar
- 32D. C. Koningsberger, B. L. Mojet, G. E. van Dorssen, D. E. Ramaker, Top. Catal. 2000, 10, 143–155.
- 33M. Filez, E. A. Redekop, J. Dendooven, R. K. Ramachandran, E. Solano, U. Olsbye, B. M. Weckhuysen, V. V. Galvita, H. Poelman, C. Detavernier, G. B. Marin, Angew. Chem. Int. Ed. 2019, 58, 13220–13230; Angew. Chem. 2019, 131, 13354–13364.
- 34A. Grimaud, K. J. May, C. E. Carlton, Y.-L. Lee, M. Risch, W. T. Hong, J. Zhou, Y. Shao-Horn, Nat. Commun. 2013, 4, 2439.
- 35J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Phys. Chem. Chem. Phys. 2010, 12, 5503–5513.
- 36K. Kanchiang, S. Pramchu, R. Yimnirun, P. Pakawanit, S. Ananta, Y. Laosiritaworn, J. Appl. Phys. 2013, 114, 064103.
- 37Y. Matsushima, K. Suda, N. Ishizawa, N. Wakiya, N. Mizutani, in Materials Science and Engineering Serving Society (Eds.: ), Elsevier, Amsterdam, 1998, pp. 198–201.
10.1016/B978-044482793-7/50046-1 Google Scholar
- 38F. de Groot, Chem. Rev. 2001, 101, 1779–1808.
- 39Y.-S. Liu, P.-A. Glans, C.-H. Chuang, M. Kapilashrami, J. Guo, J. Electron Spectrosc. Relat. Phenom. 2015, 200, 282–292.
- 40C. Hu, Q. Ma, S.-F. Hung, Z.-N. Chen, D. Ou, B. Ren, H. M. Chen, G. Fu, N. Zheng, Chem 2017, 3, 122–133.
- 41
- 41aM. W. Kanan, J. Yano, Y. Surendranath, M. Dincă, V. K. Yachandra, D. G. Nocera, J. Am. Chem. Soc. 2010, 132, 13692–13701;
- 41bN. Yuan, V. Pascanu, Z. Huang, A. Valiente, N. Heidenreich, S. Leubner, A. K. Inge, J. Gaar, N. Stock, I. Persson, B. Martín-Matute, X. Zou, J. Am. Chem. Soc. 2018, 140, 8206–8217.
- 42D. K. Bediako, B. Lassalle-Kaiser, Y. Surendranath, J. Yano, V. K. Yachandra, D. G. Nocera, J. Am. Chem. Soc. 2012, 134, 6801–6809.
- 43
- 43aH. Yuzawa, M. Nagasaka, N. Kosugi, J. Phys. Chem. C 2015, 119, 7738–7745;
- 43bM. F. Tesch, S. A. Bonke, T. E. Jones, M. N. Shaker, J. Xiao, K. Skorupska, R. Mom, J. Melder, P. Kurz, A. Knop-Gericke, R. Schlögl, R. K. Hocking, A. N. Simonov, Angew. Chem. Int. Ed. 2019, 58, 3426–3432; Angew. Chem. 2019, 131, 3464–3470.
- 44P. Jiang, J.-L. Chen, F. Borondics, P.-A. Glans, M. W. West, C.-L. Chang, M. Salmeron, J. Guo, Electrochem. Commun. 2010, 12, 820–822.
- 45D. Drevon, M. Görlin, P. Chernev, L. Xi, H. Dau, K. M. Lange, Sci. Rep. 2019, 9, 1532.
- 46C. Nayak, S. N. Jha, D. Bhattacharyya, in In-situ Characterization Techniques for Nanomaterials (Ed.: ), Springer, Berlin, Heidelberg, 2018, pp. 189–222.
10.1007/978-3-662-56322-9_6 Google Scholar
- 47A. S. Hoffman, L. M. Debefve, A. Bendjeriou-Sedjerari, S. Ouldchikh, S. R. Bare, J.-M. Basset, B. C. Gates, Rev. Sci. Instrum. 2016, 87, 073108.
- 48Y. Yang, Y. Wang, Y. Xiong, X. Huang, L. Shen, R. Huang, H. Wang, J. P. Pastore, S.-H. Yu, L. Xiao, J. D. Brock, L. Zhuang, H. D. Abruña, J. Am. Chem. Soc. 2019, 141, 1463–1466.
- 49S. Song, J. Zhou, X. Su, Y. Wang, J. Li, L. Zhang, G. Xiao, C. Guan, R. Liu, S. Chen, H.-J. Lin, S. Zhang, J.-Q. Wang, Energy Environ. Sci. 2018, 11, 2945–2953.
- 50T. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 13925–13931.
- 51J. Huang, J. Chen, T. Yao, J. He, S. Jiang, Z. Sun, Q. Liu, W. Cheng, F. Hu, Y. Jiang, Z. Pan, S. Wei, Angew. Chem. Int. Ed. 2015, 54, 8722–8727; Angew. Chem. 2015, 127, 8846–8851.
- 52C. M. Wang, G. S. Cargill, H. M. Chan, M. P. Harmer, J. Am. Ceram. Soc. 2002, 85, 2492–2498.
- 53
- 53aK. Luo, M. R. Roberts, R. Hao, N. Guerrini, D. M. Pickup, Y.-S. Liu, K. Edström, J. Guo, A. V. Chadwick, L. C. Duda, P. G. Bruce, Nat. Chem. 2016, 8, 684–691;
- 53bU. Maitra, R. A. House, J. W. Somerville, N. Tapia-Ruiz, J. G. Lozano, N. Guerrini, R. Hao, K. Luo, L. Jin, M. A. Pérez-Osorio, F. Massel, D. M. Pickup, S. Ramos, X. Lu, D. E. McNally, A. V. Chadwick, F. Giustino, T. Schmitt, L. C. Duda, M. R. Roberts, P. G. Bruce, Nat. Chem. 2018, 10, 288–295.
- 54J. Nordgren, J.-E. Rubensson, in Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications (Eds.: ), Springer International Publishing, Cham, 2016, pp. 1261–1290.
- 55C. Århammar, A. Pietzsch, N. Bock, E. Holmström, C. M. Araujo, J. Gråsjö, S. Zhao, S. Green, T. Peery, F. Hennies, S. Amerioun, A. Föhlisch, J. Schlappa, T. Schmitt, V. N. Strocov, G. A. Niklasson, D. C. Wallace, J.-E. Rubensson, B. Johansson, R. Ahuja, Proc. Natl. Acad. Sci. USA 2011, 108, 6355–6360.