Molecular Evidence for Metallic Cobalt Boosting CO2 Electroreduction on Pyridinic Nitrogen
Chao He
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Yun Zhang
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorYuefeng Zhang
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorLu Zhao
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorLu-Pan Yuan
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Jianan Zhang
College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorProf. Jianmin Ma
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorCorresponding Author
Prof. Jin-Song Hu
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorChao He
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Yun Zhang
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorYuefeng Zhang
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorLu Zhao
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorLu-Pan Yuan
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Jianan Zhang
College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorProf. Jianmin Ma
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorCorresponding Author
Prof. Jin-Song Hu
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorGraphical Abstract
Nitrogen-doped carbon catalysts are presented for application in the electrochemical CO2 reduction reaction (CO2RR). Molecular probes were designed to clarify the genuine catalytically active sites. CO2RR takes place preferentially on pyridinic rather than pyrrolic nitrogen, and metallic cobalt nanoparticles enhance the CO2RR on pyridinic nitrogen significantly.
Abstract
Nitrogen-doped carbon materials (N-Cmat) are emerging as low-cost metal-free electrocatalysts for the electrochemical CO2 reduction reaction (CO2RR), although the activities are still unsatisfactory and the genuine active site is still under debate. We demonstrate that the CO2RR to CO preferentially takes place on pyridinic N rather than pyrrolic N using phthalocyanine (Pc) and porphyrin with well-defined N-Cmat configurations as molecular model catalysts. Systematic experiments and theoretic calculations further reveal that the CO2RR performance on pyridinic N can be significantly boosted by electronic modulation from in-situ-generated metallic Co nanoparticles. By introducing Co nanoparticles, Co@Pc/C can achieve a Faradaic efficiency of 84 % and CO current density of 28 mA cm−2 at −0.9 V, which are 18 and 47 times higher than Pc/C without Co, respectively. These findings provide new insights into the CO2RR on N-Cmat, which may guide the exploration of cost-effective electrocatalysts for efficient CO2 reduction.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201916520-sup-0001-misc_information.pdf4.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Lin, C. S. Diercks, Y.-B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi, C. J. Chang, Science 2015, 349, 1208–1213;
- 1bR. G. Mariano, K. McKelvey, H. S. White, M. W. Kanan, Science 2017, 358, 1187–1192.
- 2
- 2aZ. Weng, Y. Wu, M. Wang, J. Jiang, K. Yang, S. Huo, X.-F. Wang, Q. Ma, G. W. Brudvig, V. S. Batista, Y. Liang, Z. Feng, H. Wang, Nat. Commun. 2018, 9, 415;
- 2bJ. Kim, W. Choi, J. W. Park, C. Kim, M. Kim, H. Song, J. Am. Chem. Soc. 2019, 141, 6986–6994;
- 2cK. Sun, T. Cheng, L. Wu, Y. Hu, J. Zhou, A. Maclennan, Z. Jiang, Y. Gao, W. A. Goddard, Z. Wang, J. Am. Chem. Soc. 2017, 139, 15608–15611;
- 2dL. Lu, X. Sun, J. Ma, Q. Zhu, C. Wu, D. Yang, B. Han, Sci. China Chem. 2018, 61, 228–235;
- 2eS. Gao, Z. Sun, W. Liu, X. Jiao, X. Zu, Q. Hu, Y. Sun, T. Yao, W. Zhang, S. Wei, Y. Xie, Nat. Commun. 2017, 8, 14503;
- 2fP. Sekar, L. Calvillo, C. Tubaro, M. Baron, A. Pokle, F. Carraro, A. Martucci, S. Agnoli, ACS Catal. 2017, 7, 7695–7703;
- 2gL. Dai, Q. Qin, P. Wang, X. Zhao, C. Hu, P. Liu, R. Qin, M. Chen, D. Ou, C. Xu, S. Mo, B. Wu, G. Fu, P. Zhang, N. Zheng, Sci. Adv. 2017, 3, e1701069;
- 2hY. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, S.-Z. Qiao, J. Am. Chem. Soc. 2019, 141, 7646–7659.
- 3
- 3aT. Zheng, K. Jiang, H. Wang, Adv. Mater. 2018, 30, 1802066;
- 3bA. D. Handoko, F. Wei, Jenndy, B. S. Yeo, Z. W. Seh, Nat. Catal. 2018, 1, 922–934;
- 3cD. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, X. Bao, J. Am. Chem. Soc. 2015, 137, 4288–4291;
- 3dX. Li, W. Bi, M. Chen, Y. Sun, H. Ju, W. Yan, J. Zhu, X. Wu, W. Chu, C. Wu, Y. Xie, J. Am. Chem. Soc. 2017, 139, 14889–14892;
- 3eM. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X. Zheng, C. T. Dinh, F. Fan, C. Cao, F. P. G. de Arquer, T. S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S. O. Kelley, E. H. Sargent, Nature 2016, 537, 382–386.
- 4
- 4aP. P. Sharma, J. Wu, R. M. Yadav, M. Liu, C. J. Wright, C. S. Tiwary, B. I. Yakobson, J. Lou, P. M. Ajayan, X.-D. Zhou, Angew. Chem. Int. Ed. 2015, 54, 13701–13705; Angew. Chem. 2015, 127, 13905–13909;
- 4bB. Kumar, M. Asadi, D. Pisasale, S. Sinha-Ray, B. A. Rosen, R. Haasch, J. Abiade, A. L. Yarin, A. Salehi-Khojin, Nat. Commun. 2013, 4, 2819;
- 4cS. Zhang, P. Kang, S. Ubnoske, M. K. Brennaman, N. Song, R. L. House, J. T. Glass, T. J. Meyer, J. Am. Chem. Soc. 2014, 136, 7845–7848;
- 4dX. Cui, Z. Pan, L. Zhang, H. Peng, G. Zheng, Adv. Energy Mater. 2017, 7, 1701456;
- 4eH. Wang, J. Jia, P. Song, Q. Wang, D. Li, S. Min, C. Qian, L. Wang, Y. F. Li, C. Ma, T. Wu, J. Yuan, M. Antonietti, G. A. Ozin, Angew. Chem. Int. Ed. 2017, 56, 7847–7852; Angew. Chem. 2017, 129, 7955–7960;
- 4fS. Liu, H. Yang, X. Huang, L. Liu, W. Cai, J. Gao, X. Li, T. Zhang, Y. Huang, B. Liu, Adv. Funct. Mater. 2018, 28, 1800499.
- 5J. Wu, M. Liu, P. P. Sharma, R. M. Yadav, L. Ma, Y. Yang, X. Zou, X.-D. Zhou, R. Vajtai, B. I. Yakobson, J. Lou, P. M. Ajayan, Nano Lett. 2016, 16, 466–470.
- 6
- 6aA. S. Varela, N. Ranjbar Sahraie, J. Steinberg, W. Ju, H.-S. Oh, P. Strasser, Angew. Chem. Int. Ed. 2015, 54, 10758–10762; Angew. Chem. 2015, 127, 10908–10912;
- 6bJ. Wang, X. Huang, S. Xi, J.-M. Lee, C. Wang, Y. Du, X. Wang, Angew. Chem. Int. Ed. 2019, 58, 13532–13539; Angew. Chem. 2019, 131, 13666–13673.
- 7
- 7aZ. Zhang, J. Xiao, X.-J. Chen, S. Yu, L. Yu, R. Si, Y. Wang, S. Wang, X. Meng, Y. Wang, Z.-Q. Tian, D. Deng, Angew. Chem. Int. Ed. 2018, 57, 16339–16342; Angew. Chem. 2018, 130, 16577–16580;
- 7bS. Kusama, T. Saito, H. Hashiba, A. Sakai, S. Yotsuhashi, ACS Catal. 2017, 7, 8382–8385;
- 7cL. Lin, H. Li, C. Yan, H. Li, R. Si, M. Li, J. Xiao, G. Wang, X. Bao, Adv. Mater. 2019, 31, 1903470;
- 7dX. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang, Y. Liang, H. Wang, Nat. Commun. 2017, 8, 14675;
- 7eN. Morlanés, K. Takanabe, V. Rodionov, ACS Catal. 2016, 6, 3092–3095.
- 8
- 8aL. Hu, Q. Peng, Y. Li, J. Am. Chem. Soc. 2008, 130, 16136–16137;
- 8bM. Leng, X. Huang, W. Xiao, J. Ding, B. Liu, Y. Du, J. Xue, Nano Energy 2017, 33, 445–452.
- 9
- 9aZ. Zhao, J. Fan, M. Xie, Z. Wang, J. Cleaner Prod. 2009, 17, 1025–1029;
- 9bM. Szybowicz, W. Bała, K. Fabisiak, K. Paprocki, M. Drozdowski, Cryst. Res. Technol. 2010, 45, 1265–1271.
- 10S. K. Singh, V. M. Dhavale, S. Kurungot, ACS Appl. Mater. Interfaces 2015, 7, 442–451.
- 11
- 11aJ. Wu, S. Ma, J. Sun, J. I. Gold, C. Tiwary, B. Kim, L. Zhu, N. Chopra, I. N. Odeh, R. Vajtai, A. Z. Yu, R. Luo, J. Lou, G. Ding, P. J. A. Kenis, P. M. Ajayan, Nat. Commun. 2016, 7, 13869;
- 11bM. Kuang, A. Guan, Z. Gu, P. Han, L. Qian, G. Zheng, Nano Res. 2019, 12, 2324–2329.