Nanoparticle-Assisted Alignment of Carbon Nanotubes on DNA Origami
Yueyue Zhang
Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127 China
Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Xiuhai Mao
Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Fan Li
Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127 China
Search for more papers by this authorDr. Min Li
Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127 China
Search for more papers by this authorDr. Xinxin Jing
Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127 China
Search for more papers by this authorProf. Zhilei Ge
Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127 China
Search for more papers by this authorProf. Lihua Wang
Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
Search for more papers by this authorProf. Kai Liu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Hongjie Zhang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Chunhai Fan
Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127 China
Search for more papers by this authorCorresponding Author
Prof. Xiaolei Zuo
Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127 China
Search for more papers by this authorYueyue Zhang
Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127 China
Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Xiuhai Mao
Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Fan Li
Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127 China
Search for more papers by this authorDr. Min Li
Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127 China
Search for more papers by this authorDr. Xinxin Jing
Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127 China
Search for more papers by this authorProf. Zhilei Ge
Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127 China
Search for more papers by this authorProf. Lihua Wang
Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
Search for more papers by this authorProf. Kai Liu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Hongjie Zhang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Chunhai Fan
Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127 China
Search for more papers by this authorCorresponding Author
Prof. Xiaolei Zuo
Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127 China
Search for more papers by this authorGraphical Abstract
Spherical nucleic acids (SNAs) are used to precisely position carbon nanotubes (CNTs) on DNA origami. The DNA hybridization occurring at the interface of the SNA and DNA-coated CNTs leads to an approximately five-fold improvement in the positioning efficiency in comparison to the positioning of DNA-coated CNTs directly on the DNA origami.
Abstract
Aligning carbon nanotubes (CNTs) is a key challenge for fabricating CNT-based electronic devices. Herein, we report a spherical nucleic acid (SNA) mediated approach for the highly precise alignment of CNTs at prescribed sites on DNA origami. We find that the cooperative DNA hybridization occurring at the interface of SNA and DNA-coated CNTs leads to an approximately five-fold improvement of the positioning efficiency. By combining this with the intrinsic positioning addressability of DNA origami, CNTs can be aligned in parallel with an extremely small angular variation of within 10°. Moreover, we demonstrate that the parallel alignment of CNTs prevents incorrect logic functionality originating from stray conducting paths formed by misaligned CNTs. This SNA-mediated method thus holds great potential for fabricating scalable CNT arrays for nanoelectronics.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201916043-sup-0001-misc_information.pdf4.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. C. Hersam, Nat. Nanotechnol. 2008, 3, 387;
- 1bA. D. Franklin, Nature 2013, 498, 443–444;
- 1cM. Cha, S. Jung, M. H. Cha, G. Kim, J. Ihm, J. Lee, Nano Lett. 2009, 9, 1345–1349;
- 1dM. P. Landry, H. Ando, A. Y. Chen, J. Cao, V. I. Kottadiel, L. Chio, D. Yang, J. Dong, T. K. Lu, M. S. Strano, Nat. Nanotechnol. 2017, 12, 368–377;
- 1eE. Miyako, K. Kono, E. Yuba, C. Hosokawa, H. Nagai, Y. Hagihara, Nat. Commun. 2012, 3, 1226;
- 1fD. A. Heller, H. Jin, B. M. Martinez, D. Patel, B. M. Miller, T. K. Yeung, P. V. Jena, C. Hobartner, T. Ha, S. K. Silverman, M. S. Strano, Nat. Nanotechnol. 2009, 4, 114–120;
- 1gA. K. R. Lytton-Jean, C. A. Mirkin, J. Am. Chem. Soc. 2005, 127, 12754–12755.
- 2
- 2aP. M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science 1994, 265, 1212–1214;
- 2bG. S. Tulevski, J. Hannon, A. Afzali, Z. Chen, P. Avouris, C. R. Kagan, J. Am. Chem. Soc. 2007, 129, 11964–11968.
- 3C. Klinke, J. B. Hannon, A. Afzali, P. Avouris, Nano Lett. 2006, 6, 906–910.
- 4Y. Zhang, F. Li, M. Li, X. Mao, X. Jing, X. Liu, Q. Li, J. Li, L. Wang, C. Fan, X. Zuo, J. Am. Chem. Soc. 2019, 141, 17861–17866.
- 5Z. Liu, L. Jiao, Y. Yao, X. Xian, J. Zhang, Adv. Mater. 2010, 22, 2285–2310.
- 6
- 6aM. M. Shulaker, G. Hills, R. S. Park, R. T. Howe, K. Saraswat, H. P. Wong, S. Mitra, Nature 2017, 547, 74–78;
- 6bS. J. Han, J. Tang, B. Kumar, A. Falk, D. Farmer, G. Tulevski, K. Jenkins, A. Afzali, S. Oida, J. Ott, Nat. Nanotechnol. 2017, 12, 861–865.
- 7Q. Cao, S. J. Han, G. S. Tulevski, Y. Zhu, D. D. Lu, W. Haensch, Nat. Nanotechnol. 2013, 8, 180–186.
- 8M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen, H. S. Wong, S. Mitra, Nature 2013, 501, 526–530.
- 9
- 9aH. Park, A. Afzali, S. J. Han, G. S. Tulevski, A. D. Franklin, J. Tersoff, J. B. Hannon, W. Haensch, Nat. Nanotechnol. 2012, 7, 787–791;
- 9bS. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin, J. A. Rogers, Nat. Nanotechnol. 2007, 2, 230–236;
- 9cJ. A. Bardecker, A. Afzali, G. S. Tulevski, T. Graham, J. B. Hannon, A. K.-Y. Jen, J. Am. Chem. Soc. 2008, 130, 7226–7227;
- 9dZ. Hu, J. M. M. L. Comeras, H. Park, J. Tang, A. Afzali, G. S. Tulevski, J. B. Hannon, M. Liehr, S. J. Han, Nat. Nanotechnol. 2016, 11, 559;
- 9eS. Selmani, D. J. Schipper, Angew. Chem. Int. Ed. 2018, 57, 2399–2403; Angew. Chem. 2018, 130, 2423–2427.
- 10
- 10aN. Liu, T. Liedl, Chem. Rev. 2018, 118, 3032–3053;
- 10bN. C. Seeman, H. F. Sleiman, Nat. Rev. Mater. 2017, 3, 17068.
- 11
- 11aM. J. Urban, S. Both, C. Zhou, A. Kuzyk, K. Lindfors, T. Weiss, N. Liu, Nat. Commun. 2018, 9, 1454;
- 11bX. Lan, X. Lu, C. Shen, Y. Ke, W. Ni, Q. Wang, J. Am. Chem. Soc. 2015, 137, 457–462;
- 11cB. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, J. Bokor, J. Am. Chem. Soc. 2010, 132, 3248–3249;
- 11dA. Shaw, I. T. Hoffecker, I. Smyrlaki, J. Rosa, A. Grevys, D. Bratlie, I. Sandlie, T. E. Michaelsen, J. T. Andersen, B. Hogberg, Nat. Nanotechnol. 2019, 14, 184–190;
- 11eX. Liu, F. Zhang, X. Jing, M. Pan, P. Liu, W. Li, B. Zhu, J. Li, H. Chen, L. Wang, J. Lin, Y. Liu, D. Zhao, H. Yan, C. Fan, Nature 2018, 559, 593–598;
- 11fX. Jing, F. Zhang, M. Pan, X. Dai, J. Li, L. Wang, X. Liu, H. Yan, C. Fan, Nat. Protoc. 2019, 14, 2416–2436.
- 12
- 12aZ. Zhao, Y. Liu, H. Yan, Org. Biomol. Chem. 2013, 11, 596–598;
- 12bH. T. Maune, S. P. Han, R. D. Barish, M. Bockrath, W. A. Goddard III, P. W. Rothemund, E. Winfree, Nat. Nanotechnol. 2010, 5, 61–66;
- 12cH. Pei, R. Sha, X. Wang, M. Zheng, C. Fan, J. W. Canary, N. C. Seeman, J. Am. Chem. Soc. 2019, 141, 11923–11928.
- 13
- 13aJ. I. Cutler, E. Auyeung, C. A. Mirkin, J. Am. Chem. Soc. 2012, 134, 1376–1391;
- 13bH. D. Hill, J. E. Millstone, M. J. Banholzer, C. A. Mirkin, ACS Nano 2009, 3, 418;
- 13cN. L. Rosi, D. A. Giljohann, T. C. Shad, A. K. R. Lytton-Jean, H. M. Su, C. A. Mirkin, Science 2006, 312, 1027–1030.
- 14
- 14aS. Y. Park, A. K. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, C. A. Mirkin, Nature 2008, 451, 553–556;
- 14bD. Nykypanchuk, M. M. Maye, D. van der Lelie, O. Gang, Nature 2008, 451, 549–552;
- 14cS. J. Hurst, H. D. Hill, C. A. Mirkin, J. Am. Chem. Soc. 2008, 130, 12192–12200.
- 15
- 15aY. Ke, S. M. Douglas, M. Liu, J. Sharma, A. Cheng, A. Leung, Y. Liu, W. M. Shih, H. Yan, J. Am. Chem. Soc. 2009, 131, 15903–15908;
- 15bP. W. Rothemund, Nature 2006, 440, 297–302.
- 16
- 16aE. Penzo, M. Palma, R. Wang, H. Cai, M. Zheng, S. J. Wind, Nano Lett. 2015, 15, 6547–6552;
- 16bA. Mangalum, M. Rahman, M. L. Norton, J. Am. Chem. Soc. 2013, 135, 2451–2454.
- 17S. W. Hong, T. Banks, J. A. Rogers, Adv. Mater. 2010, 22, 1826–1830.
- 18G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, M. M. Shulaker, Nature 2019, 572, 595–602.