Enantioselective Radical-Polar Crossover Reactions of Indanonecarboxamides with Alkenes
Xiying Zhang
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorWangbin Wu
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorWeidi Cao
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorHan Yu
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorXi Xu
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaohua Liu
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaoming Feng
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorXiying Zhang
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorWangbin Wu
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorWeidi Cao
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorHan Yu
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorXi Xu
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaohua Liu
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaoming Feng
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorGraphical Abstract
Crossing over: A highly efficient asymmetric radical-polar crossover reaction of indanonecarboxamides/esters and various electron-rich alkenes was realized by combining a chiral N,N′-dioxide/NiII complex catalyst with Ag2O. Five types of products could be obtained with good to excellent yields and ee values.
Abstract
Highly efficient asymmetric intermolecular radical-polar crossover reactions were realized by combining a chiral N,N′-dioxide/NiII complex catalyst with Ag2O under mild reaction conditions. Various terminal alkenes and indanonecarboxamides/esters underwent radical addition/cyclization reactions to afford spiro-iminolactones and spirolactones with good to excellent yields (up to 99 %) and enantioselectivities (up to 97 % ee). Furthermore, a range of different radical-mediated oxidation/elimination or epoxide ring-opening products were obtained under mild reaction conditions. The Lewis acid catalysts exhibited excellent performance and precluded the strong background reaction.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201914151-sup-0001-misc_information.pdf6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For selected reviews, see:
- 1aW. Li, W. Xu, J. Xie, S. Yu, C. Zhu, Chem. Soc. Rev. 2018, 47, 654;
- 1bM. D. Kärkäs, Chem. Soc. Rev. 2018, 47, 5786;
- 1cH. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh, A. Lei, Chem. Rev. 2017, 117, 9016;
- 1dM. Yan, J. C. Lo, J. T. Edwards, P. S. Baran, J. Am. Chem. Soc. 2016, 138, 12692;
- 1eA. Studer, D. P. Curran, Angew. Chem. Int. Ed. 2016, 55, 58; Angew. Chem. 2016, 128, 58;
- 1fZ. Chen, X. Zhang, Y. Tu, Chem. Soc. Rev. 2015, 44, 5220;
- 1g“Manganese (III) Acetate”: B. B. Snider, A. Meunier, C. Y. Legault, Encyclopedia of Reagents for Organic Synthesis, Wiley, Hoboken, 2012;
- 1hB. B. Snider, Tetrahedron 2009, 65, 10738;
- 1iB. B. Snider, Chem. Rev. 1996, 96, 339; For selected examples, see:
- 1jB. B. Snider, S. M. O'Hare, Synth. Commun. 2001, 31, 3753;
- 1kP. A. Zoretic, H. Fang, J. Org. Chem. 1998, 63, 7213;
- 1lP. A. Zoretic, Z. Chen, Y. Zhang, A. A. Ribeiro, Tetrahedron Lett. 1996, 37, 7909.
- 2For selected reviews, see:
- 2aJ. M. Smith, S. J. Harwood, P. S. Baran, Acc. Chem. Res. 2018, 51, 1807;
- 2bK. J. Romero, M. S. Galliher, D. A. Pratt, C. R. J. Stephenson, Chem. Soc. Rev. 2018, 47, 7851;
- 2cW. Zi, Z. Zuo, D. Ma, Acc. Chem. Res. 2015, 48, 702; For selected examples, see:
- 2dF.-L. Wang, X.-Y. Dong, J.-S. Lin, Y. Zeng, G.-Y. Jiao, Q.-S. Gu, X.-Q. Guo, C.-L. Ma, X.-Y. Liu, Chem 2017, 3, 979;
- 2eZ. G. Brill, H. K. Grover, T. J. Maimone, Science 2016, 352, 1078;
- 2fT. Hashimoto, Y. Kawamata, K. Maruoka, Nat. Chem. 2014, 6, 702.
- 3
- 3aQ. Zhang, R. M. Mohan, L. Cook, S. Kazanis, D. Peisach, B. M. Foxman, B. B. Snider, J. Org. Chem. 1993, 58, 7640;
- 3bP. A. Zoretic, X. Weng, C. K. Biggers, M. S. Biggers, M. L. Caspar, Tetrahedron Lett. 1992, 33, 2637;
- 3cB. B. Snider, Q. Zhang, Tetrahedron Lett. 1992, 33, 5921;
- 3dB. B. Snider, B. Y.-F. Wan, B. O. Buckman, B. M. Foxman, J. Org. Chem. 1991, 56, 328.
- 4For selected reviews and examples, see:
- 4aK. F. Biegasiewicz, S. J. Cooper, X. Gao, D. G. Oblinsky, J. H. Kim, S. E. Garfinkle, L. A. Joyce, B. A. Sandoval, G. D. Scholes, T. K. Hyster, Science 2019, 364, 1166;
- 4bR. Calvo, A. Comas-Vives, A. Togni, D. Katayev, Angew. Chem. Int. Ed. 2019, 58, 1447; Angew. Chem. 2019, 131, 1461;
- 4cG. C. Fu, ACS Cent. Sci. 2017, 3, 692;
- 4dQ. M. Kainz, C. D. Matier, A. Bartoszewicz, S. L. Zultanski, J. C. Peters, G. C. Fu, Science 2016, 351, 681.
- 5
- 5aL. Zhu, D. Wang, Z. Jia, Q. Lin, M. Huang, S. Luo, ACS Catal. 2018, 8, 5466; For selected examples, see:
- 5bL. Næsborg, V. Corti, L. A. Leth, P. H. Poulsen, K. A. Jørgensen, Angew. Chem. Int. Ed. 2018, 57, 1606; Angew. Chem. 2018, 130, 1622;
- 5cL. Ye, Q.-S. Gu, Y. Tian, X. Meng, G.-C. Chen, X.-Y. Liu, Nat. Commun. 2018, 9, 227;
- 5dG. Capacci, J. T. Malinowski, N. J. McAlpine, J. Kuhne, D. W. C. MacMillan, Nat. Chem. 2017, 9, 1073;
- 5eH.-Y. Jang, J.-B. Hong, D. W. C. MacMillan, J. Am. Chem. Soc. 2007, 129, 7004.
- 6
- 6aN. T. Jui, J. A. O. Garber, F. G. Finelli, D. W. C. MacMillan, J. Am. Chem. Soc. 2012, 134, 11400;
- 6bN. T. Jui, E. C. Y. Lee, D. W. C. MacMillan, J. Am. Chem. Soc. 2010, 132, 10015.
- 7For selected reviews, see:
- 7aX. Huang, E. Meggers, Acc. Chem. Res. 2019, 52, 833;
- 7bK. L. Skubi, T. R. Blum, T. P. Yoon, Chem. Rev. 2016, 116, 10035;
- 7cJ. Zimmerman, M. P. Sibi, Top. Curr. Chem. 2006, 263, 107;
- 7dM. P. Sibi, S. Manyem, J. Zimmerman, Chem. Rev. 2003, 103, 3263;
- 7eM. P. Sibi, N. A. Porter, Acc. Chem. Res. 1999, 32, 163; For selected examples, see:
- 7fS. Adachi, N. Takeda, M. P. Sibi, Org. Lett. 2014, 16, 6440;
- 7gM. P. Sibi, J. Zimmerman, T. Rheaul, Angew. Chem. Int. Ed. 2003, 42, 4521; Angew. Chem. 2003, 115, 4659;
- 7hM. P. Sibi, Y. Asano, J. B. Sausker, Angew. Chem. Int. Ed. 2001, 40, 1293;
10.1002/1521-3773(20010401)40:7<1293::AID-ANIE1293>3.0.CO;2-Y CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 1333.
- 8
- 8aH. Miyabe, R. Asada, A. Toyoda, Y. Takemoto, Org. Biomol. Chem. 2012, 10, 3519;
- 8bH. Miyabe, R. Asada, A. Toyoda, Y. Takemoto, Angew. Chem. Int. Ed. 2006, 45, 5863; Angew. Chem. 2006, 118, 5995;
- 8cK. Hiroi, M. Ishii, Tetrahedron Lett. 2000, 41, 7071;
- 8dC. L. Mero, N. A. Porter, J. Am. Chem. Soc. 1999, 121, 5155;
- 8eN. A. Porter, J. H. Wu, G. Zhang, A. D. Reed, J. Org. Chem. 1997, 62, 6702;
- 8fM. Murakata, T. Jono, Y. Mizuno, O. Hoshino, J. Am. Chem. Soc. 1997, 119, 11713;
- 8gJ. H. Wu, R. Radinov, N. A. Porter, J. Am. Chem. Soc. 1995, 117, 11029.
- 9
- 9aD. Yang, B.-F. Zheng, Q. Gao, S. Gu, N.-Y. Zhu, Angew. Chem. Int. Ed. 2006, 45, 255; Angew. Chem. 2006, 118, 261;
- 9bD. Yang, S. Gu, Y.-L. Yan, H.-W. Zhao, N.-Y. Zhu, Angew. Chem. Int. Ed. 2002, 41, 3014;
10.1002/1521-3773(20020816)41:16<3014::AID-ANIE3014>3.0.CO;2-J CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 3140;
- 9cD. Yang, S. Gu, Y.-L. Yan, N.-Y. Zhu, K.-K. Cheung, J. Am. Chem. Soc. 2001, 123, 8612.
- 10
- 10aN. Kern, M. P. Plesniak, J. J. W. McDouall, D. J. Procter, Nat. Chem. 2017, 9, 1198;
- 10bD. Riber, R. Hazell, T. Skrydstrup, J. Org. Chem. 2000, 65, 5382.
- 11
- 11aN. Tanaka, M. Okasaka, Y. Ishimaru, Y. Takaishi, M. Sato, M. Okamoto, T. Oshikawa, S. U. Ahmed, L. M. Consentino, K.-H. Lee, Org. Lett. 2005, 7, 2997;
- 11bW. Elger, S. Beier, K. Pollow, R. Garfield, S. Q. Shi, A. Hillisch, Steroids 2003, 68, 891;
- 11cC. A. Farquharson, A. D. Struthers, Circulation 2000, 101, 594.
- 12
- 12aT. Y. Ko, S. W. Youn, Adv. Synth. Catal. 2016, 358, 1934.
- 13
- 13aX. H. Liu, S. X. Dong, L. L. Lin, X. M. Feng, Chin. J. Chem. 2018, 36, 791;
- 13bX. H. Liu, H. F. Zheng, Y. Xia, L. L. Lin, X. M. Feng, Acc. Chem. Res. 2017, 50, 2621;
- 13cX. H. Liu, L. L. Lin, X. M. Feng, Org. Chem. Front. 2014, 1, 298;
- 13dX. H. Liu, L. L. Lin, X. M. Feng, Acc. Chem. Res. 2011, 44, 574.
- 14CCDC 1936920, 1936920, 1945357 and 1939349 (3 aa, 3 ma, 3 ai, 8 aa) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- 15The 1,1-diarylethylenes are easily oxidized to the diarylketones with the presence of Ag2O, which leads to the reaction be more challenging.
- 16In the absence of 2 or with less reactive variants of 2, which did not undergo the desired transformation, the product 11 aa was obtained as the major product. The product 12 aa was obtained by using CuCl2 (2 equiv) instead of Ag2O as the oxidant. See the Supporting Information for details.
- 17J. He, J. Ling, P. Chiu, Chem. Rev. 2014, 114, 8037.