Synthesis of Biaryl-Bridged Cyclic Peptides via Catalytic Oxidative Cross-Coupling Reactions
Correction(s) for this article
-
Corrigendum: Synthesis of Biaryl-Bridged Cyclic Peptides via Catalytic Oxidative Cross-Coupling Reactions
- Volume 59Issue 35Angewandte Chemie International Edition
- pages: 14722-14722
- First Published online: August 17, 2020
Mor Ben-Lulu
Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105 Israel
These authors contributed equally to this work.
Search for more papers by this authorEden Gaster
Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105 Israel
These authors contributed equally to this work.
Search for more papers by this authorAnna Libman
Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105 Israel
Search for more papers by this authorCorresponding Author
Prof. Dr. Doron Pappo
Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105 Israel
Search for more papers by this authorMor Ben-Lulu
Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105 Israel
These authors contributed equally to this work.
Search for more papers by this authorEden Gaster
Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105 Israel
These authors contributed equally to this work.
Search for more papers by this authorAnna Libman
Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105 Israel
Search for more papers by this authorCorresponding Author
Prof. Dr. Doron Pappo
Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105 Israel
Search for more papers by this authorGraphical Abstract
Abstract
Biaryl-bridged cyclic peptides comprise an intriguing class of structurally diverse natural products with significant biological activity. Especially noteworthy are the antibiotics arylomycin and its synthetic analogue G0775, which exhibits potent activity against Gram-negative bacteria. Herein, we present a simple, flexible, and reliable strategy based on activating-group-assisted catalytic oxidative coupling for assembling biaryl-bridged cyclic peptides from natural amino acids. The synthetic approach was utilized for preparing a number of natural and unnatural biaryl-bridged cyclic peptides, including arylomycin/G0775 and RP 66453 cyclic cores.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201913305-sup-0001-misc_information.pdf10.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Zorzi, K. Deyle, C. Heinis, Curr. Opin. Chem. Biol. 2017, 38, 24–29.
- 2
- 2aL. Feliu, M. Planas, Int. J. Pept. Res. Therapeut. 2005, 11, 53–97;
- 2bK. C. Nicolaou, C. N. C. Boddy, S. Bräse, N. Winssinger, Angew. Chem. Int. Ed. 1999, 38, 2096–2152;
10.1002/(SICI)1521-3773(19990802)38:15<2096::AID-ANIE2096>3.0.CO;2-F CAS PubMed Web of Science® Google ScholarAngew. Chem. 1999, 111, 2230–2287.10.1002/(SICI)1521-3757(19990802)111:15<2230::AID-ANGE2230>3.0.CO;2-V Web of Science® Google Scholar
- 3
- 3aP. A. Smith, M. F. T. Koehler, H. S. Girgis, D. Yan, Y. Chen, Y. Chen, J. J. Crawford, M. R. Durk, R. I. Higuchi, J. Kang, J. Murray, P. Paraselli, S. Park, W. Phung, J. G. Quinn, T. C. Roberts, L. Rouge, J. B. Schwarz, E. Skippington, J. Wai, M. Xu, Z. Yu, H. Zhang, M.-W. Tan, C. E. Heise, Nature 2018, 561, 189–194;
- 3bJ. F. Fisher, S. Mobashery, Nat. Chem. 2018, 10, 998–1000.
- 4
- 4aT. C. Roberts, P. A. Smith, R. T. Cirz, F. E. Romesberg, J. Am. Chem. Soc. 2007, 129, 15830–15838;
- 4bD. S. Peters, F. E. Romesberg, P. S. Baran, J. Am. Chem. Soc. 2018, 140, 2072–2075;
- 4cN. K. Lim, X. Linghu, N. Wong, H. Zhang, C. G. Sowell, F. Gosselin, Org. Lett. 2019, 21, 147–151;
- 4dF. Romesberg, A. Craney, The Scripps Research Institute, USA, 2017, p. 56;
- 4eD. B. Steed, J. Liu, E. Wasbrough, L. Miller, S. Halasohoris, J. Miller, B. Somerville, J. R. Hershfield, F. E. Romesberg, Antimicrob. Agents Chemother. 2015, 59, 3887–3898;
- 4fA. Craney, F. E. Romesberg, Antimicrob. Agents Chemother. 2015, 59, 3066–3074;
- 4gJ.-j. Liu, M. Rao, M. Ge, W. Wei, X.-p. Qian, Zhongguo Kangshengsu Zazhi 2014, 39, 98–101;
- 4hJ. Liu, P. A. Smith, D. B. Steed, F. Romesberg, Bioorg. Med. Chem. Lett. 2013, 23, 5654–5659;
- 4iT. C. Roberts, P. A. Smith, D. Campbell, S. G. Duron, R. I. Higuchi, RQX Pharmaceuticals, Inc., USA, 2012, p. 251;
- 4jT. C. Roberts, P. A. Smith, F. E. Romesberg, J. Nat. Prod. 2011, 74, 956–961;
- 4kJ. Dufour, L. Neuville, J. Zhu, Synlett 2008, 2355–2359.
- 5
- 5aW.-T. Liu, R. D. Kersten, Y.-L. Yang, B. S. Moore, P. C. Dorrestein, J. Am. Chem. Soc. 2011, 133, 18010–18013;
- 5bD. Bischoff, B. Bister, M. Bertazzo, V. Pfeifer, E. Stegmann, G. J. Nicholson, S. Keller, S. Pelzer, W. Wohlleben, R. D. Süssmuth, ChemBioChem 2005, 6, 267–272;
- 5cD. Bischoff, S. Pelzer, B. Bister, G. J. Nicholson, S. Stockert, M. Schirle, W. Wohlleben, G. Jung, R. D. Süssmuth, Angew. Chem. Int. Ed. 2001, 40, 4688–4691;
10.1002/1521-3773(20011217)40:24<4688::AID-ANIE4688>3.0.CO;2-M CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 4824–4827.
- 6C. J. White, A. K. Yudin, Nat. Chem. 2011, 3, 509–524.
- 7J. Liu, C. Luo, P. A. Smith, J. K. Chin, M. G. P. Page, M. Paetzel, F. E. Romesberg, J. Am. Chem. Soc. 2011, 133, 17869–17877.
- 8
- 8aA.-C. Carbonnelle, J. Zhu, Org. Lett. 2000, 2, 3477–3480;
- 8bX. Zhu, C. C. McAtee, C. S. Schindler, Org. Lett. 2018, 20, 2862–2866;
- 8cJ. R. Cochrane, J. M. White, U. Wille, C. A. Hutton, Org. Lett. 2012, 14, 2402–2405;
- 8dY. Hitotsuyanagi, M. Odagiri, S. Kato, J. Kusano, T. Hasuda, H. Fukaya, K. Takeya, Chem. Eur. J. 2012, 18, 2839–2846;
- 8eM. J. Moschitto, C. A. Lewis, Eur. J. Org. Chem. 2016, 4773–4777;
- 8fP. J. Krenitsky, D. L. Boger, Tetrahedron Lett. 2003, 44, 4019–4022;
- 8gM. Bois-Choussy, P. Cristau, J. Zhu, Angew. Chem. Int. Ed. 2003, 42, 4238–4241; Angew. Chem. 2003, 115, 4370–4373;
- 8hS. Boisnard, A.-C. Carbonnelle, J. Zhu, Org. Lett. 2001, 3, 2061–2064.
- 9
- 9aH. Shalit, A. Dyadyuk, D. Pappo, J. Org. Chem. 2019, 84, 1677–1686;
- 9bH. Reiss, H. Shalit, V. Vershinin, N. Y. More, H. Forckosh, D. Pappo, J. Org. Chem. 2019, 84, 7950–7960;
- 9cH. Shalit, A. Libman, D. Pappo, J. Am. Chem. Soc. 2017, 139, 13404–13413;
- 9dS. Narute, D. Pappo, Org. Lett. 2017, 19, 2917–2920;
- 9eS. Narute, R. Parnes, F. D. Toste, D. Pappo, J. Am. Chem. Soc. 2016, 138, 16553–16560;
- 9fA. Libman, H. Shalit, Y. Vainer, S. Narute, S. Kozuch, D. Pappo, J. Am. Chem. Soc. 2015, 137, 11453–11460.
- 10D. A. Malencik, J. F. Sprouse, C. A. Swanson, S. R. Anderson, Anal. Biochem. 1996, 242, 202–213.
- 11
- 11aH. Eickhoff, G. Jung, A. Rieker, Tetrahedron 2001, 57, 353–364;
- 11bJ. C. Yoburn, S. Deb, I. W. Manfield, P. G. Stockley, D. L. Van Vranken, Bioorg. Med. Chem. 2003, 11, 811–816.
- 12L. O. Reid, C. Castaño, M. L. Dántola, V. Lhiaubet-Vallet, M. A. Miranda, M. L. Marin, A. H. Thomas, Dyes Pigm. 2017, 147, 67–74.
- 13S. Nishiyama, M. H. Kim, S. Yamamura, Tetrahedron lett. 1994, 35, 8397–8400.
- 14
- 14aD.-I. Lee, S. Hwang, J. Y. Choi, I.-S. Ahn, C.-H. Lee, Proc. Biochem. 2008, 43, 999–1003;
- 14bS. Pérez-Rodríguez, R. Pereira-Cameselle, Á. R. de Lera, Org. Biomol. Chem. 2012, 10, 6945–6950;
- 14cA. G. Brown, P. D. Edwards, Tetrahedron Lett. 1990, 31, 6581–6584.
- 15D.-I. Lee, J.-Y. Choi, C.-J. Kim, I.-S. Ahn, Proc. Biochem. 2011, 46, 142–147.
- 16M. N. Möller, D. M. Hatch, H.-Y. H. Kim, N. A. Porter, J. Am. Chem. Soc. 2012, 134, 16773–16780.
- 17E. Gaster, Y. Vainer, A. Regev, S. Narute, K. Sudheendran, A. Werbeloff, H. Shalit, D. Pappo, Angew. Chem. Int. Ed. 2015, 54, 4198–4202; Angew. Chem. 2015, 127, 4272–4276.
- 18M. Lucarini, G. F. Pedulli, Chem. Soc. Rev. 2010, 39, 2106–2119.
- 19
- 19aY.-R. Luo, Comprehensive handbook of chemical bond energies, CRC, Boca Raton, FL, 2007;
10.1201/9781420007282 Google Scholar
- 19bC. Marteau, R. Guitard, C. Penverne, D. Favier, V. Nardello-Rataj, J.-M. Aubry, Food Chem. 2016, 196, 418–427.
- 20
- 20aA. S. Hay, J. Org. Chem. 1969, 34, 1160–1161;
- 20bB. S. Matsuura, M. H. Keylor, B. Li, Y. Lin, S. Allison, D. A. Pratt, C. R. J. Stephenson, Angew. Chem. Int. Ed. 2015, 54, 3754–3757; Angew. Chem. 2015, 127, 3825–3828;
- 20cM. H. Keylor, B. S. Matsuura, M. Griesser, J.-P. R. Chauvin, R. A. Harding, M. S. Kirillova, X. Zhu, O. J. Fischer, D. A. Pratt, C. R. Stephenson, Science 2016, 354, 1260–1265;
- 20dX. Wu, T. Iwata, A. Scharf, T. Qin, K. D. Reichl, J. A. Porco, J. Am. Chem. Soc. 2018, 140, 5969–5975;
- 20eE. M. O'Brien, B. J. Morgan, C. A. Mulrooney, P. J. Carroll, M. C. Kozlowski, J. Org. Chem. 2010, 75, 57–68.
- 21The oxidative macrocyclization (approach A) of N-Boc-N-Me-l-(2-t-Bu)Hpg-l-Ala-l-(2-t-Bu)Tyr-OMe, which is the precursor of the arylomycin cyclic core, afforded only dimeric products under catalytic conditions (Supporting Information, Table S6).
- 22J. S. Davies, J. Pept. Sci. 2003, 9, 471–501.
- 23J. Dufour, L. Neuville, J. Zhu, Chem. Eur. J. 2010, 16, 10523–1053.