Atomic Arrangement in Metal-Doped NiS2 Boosts the Hydrogen Evolution Reaction in Alkaline Media
Jie Yin
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
These authors contributed equally to this work.
Search for more papers by this authorJing Jin
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Hong Zhang
Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 China
These authors contributed equally to this work.
Search for more papers by this authorMin Lu
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorProf. Yong Peng
Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Prof. Bolong Huang
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong SAR, China
Search for more papers by this authorCorresponding Author
Prof. Pinxian Xi
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorProf. Chun-Hua Yan
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing, 100871 China
Search for more papers by this authorJie Yin
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
These authors contributed equally to this work.
Search for more papers by this authorJing Jin
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Hong Zhang
Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 China
These authors contributed equally to this work.
Search for more papers by this authorMin Lu
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorProf. Yong Peng
Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Prof. Bolong Huang
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong SAR, China
Search for more papers by this authorCorresponding Author
Prof. Pinxian Xi
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorProf. Chun-Hua Yan
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing, 100871 China
Search for more papers by this authorDedicated to Lanzhou University on the occasion of its 110th anniversary
Graphical Abstract
Co doped: Cobalt-doped NiS2 nanosheets (NSs) with optimal eg1 electron configurations and enhanced Ni3+ content exhibit excellent activity and stability for the hydrogen evolution reaction (HER) in alkaline media. DFT results reveal that a Co-NiS2 NSs surface abnormally sensitizes Ni-3d bands towards higher electron-transfer.
Abstract
We report a novel modulation strategy by introducing transition metals into NiS2 nanosheets (NSs) to flexibly optimize the electronic configurations and atomic arrangement. The Co-NiS2 NSs exhibit excellent hydrogen evolution reaction (HER) performance with an overpotential of 80 mV at j=10 mA cm−2 and long-term stability of 90 h in alkaline media. The turnover frequencies (TOFs) of 0.55 and 4.1 s−1 at an overpotential of 100 and 200 mV also confirm their remarkable performance. DFT calculations reveal that the surface dopants abnormally sensitize surface Ni-3d bands in the long-range order towards higher electron-transfer activity, acting as the electron-depletion center. Meanwhile, the high lying surface S-sites possess substantially high selectivity for splitting the adsorbing H2O that guarantee the high HER performance within alkaline conditions. This work opens opportunities for enhancing water splitting by atomic-arrangement-assisted electronic modulation via a facile doping strategy.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201911470-sup-0001-misc_information.pdf1.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. A. Turner, Science 2004, 305, 972–974.
- 2J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, S.-H. Yang, Nat. Chem. 2011, 3, 546–550.
- 3M. K. Debe, Nature 2012, 486, 43–51.
- 4D. Su, A. McDonagh, S.-Z. Qiao, G. Wang, Adv. Mater. 2017, 29, 1604007.
- 5Y. Zhu, T. Y. Ma, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2017, 56, 1324–1328; Angew. Chem. 2017, 129, 1344–1348.
- 6J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan, M. Grätzel, Science 2014, 345, 1593–1596.
- 7
- 7aC. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem. Int. Ed. 2015, 54, 9351–9355; Angew. Chem. 2015, 127, 9483–9487;
- 7bC. C. L. McCrory, S. Jung, I. M. Ferrer, S. Chatman, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2015, 137, 4347–4357.
- 8F. Li, G.-F. Han, H.-J. Noh, Y. Lu, J. Xu, Y. Bu, Z. Fu, J.-B. Baek, Angew. Chem. Int. Ed. 2018, 57, 14139–14143; Angew. Chem. 2018, 130, 14335–14339.
- 9
- 9aR. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 2011, 334, 1256–1260;
- 9bH. Liang, A. N. Gandi, D. H. Anjum, X. Wang, U. Schwingenschlögl, H. N. Alshareef, Nano Lett. 2016, 16, 7718–7725.
- 10J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Angew. Chem. Int. Ed. 2016, 55, 6702–6707; Angew. Chem. 2016, 128, 6814–6819.
- 11K. Zeng, D. Zhang, Prog. Energy Combust. Sci. 2010, 36, 307–326.
- 12J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, J. K. Norskov, Nat. Mater. 2006, 5, 909–914.
- 13J. K. Norskov, C. H. Christensen, Science 2006, 312, 1322–1323.
- 14T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, D. G. Nocera, Chem. Rev. 2010, 110, 6474–6502.
- 15M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446–6473.
- 16Y. P. Zhu, C. Guo, Y. Zheng, S.-Z. Qiao, Acc. Chem. Res. 2017, 50, 915–923.
- 17J. Jiang, M. Gao, W. Sheng, Y. Yan, Angew. Chem. Int. Ed. 2016, 55, 15240–15245; Angew. Chem. 2016, 128, 15466–15471.
- 18G. Li, D. Zhang, Y. Yu, S. Huang, W. Yang, L. Cao, J. Am. Chem. Soc. 2017, 139, 16194–16200.
- 19L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, J. Am. Chem. Soc. 2015, 137, 14023–14026.
- 20J. M. Falkowski, N. M. Concannon, B. Yan, Y. Surendranath, J. Am. Chem. Soc. 2015, 137, 7978–7981.
- 21W. Zhou, J.-L. Zheng, Y.-H. Yue, L. Guo, Nano Energy 2015, 11, 428–435.
- 22J.-X. Feng, J.-Q. Wu, Y.-X. Tong, G.-R. Li, J. Am. Chem. Soc. 2018, 140, 610–617.
- 23Y. Wu, F. Li, W. Chen, Q. Xiang, Y. Ma, H. Zhu, P. Tao, C. Song, W. Shang, T. Deng, J. Wu, Adv. Mater. 2018, 30, 1803151.
- 24J. Yin, Y. Li, F. Lv, Q. Fan, Y.-Q. Zhao, Q. Zhang, W. Wang, F. Cheng, P. Xi, S. Guo, ACS Nano 2017, 11, 2275–2283.
- 25J. Yin, Y. Li, F. Lv, M. Lu, K. Sun, W. Wang, L. Wang, F. Cheng, Y. Li, P. Xi, S. Guo, Adv. Mater. 2017, 29, 1704681.
- 26F. Wang, C. Li, L.-D. Sun, H. Wu, T. Ming, J. Wang, J. C. Yu, C.-H. Yan, J. Am. Chem. Soc. 2011, 133, 1106–1111.
- 27
- 27aH. Zhang, T. Wang, A. Sumboja, W. Zang, J. Xie, D. Gao, S. J. Pennycook, Z. Liu, C. Guan, J. Wang, Adv. Funct. Mater. 2018, 28, 1804846;
- 27bS. Deng, F. Yang, Q. Zhang, Y. Zhong, Y. Zeng, S. Lin, X. Wang, X. Lu, C.-Z. Wang, L. Gu, X. Xia, J. Tu, Adv. Mater. 2018, 30, 1802223.
- 28
- 28aJ. Hwang, R. R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, Science 2017, 358, 751–756;
- 28bY. Zhou, S. Sun, S. Xi, Y. Duan, T. Sritharan, Y. Du, Z. J. Xu, Adv. Mater. 2018, 30, 1705407.
- 29
- 29aA. Le Goff, V. Artero, B. Jousselme, P. Dinh Tran, N. Guillet, R. Métayé, A. Fihri, S. Palacin, M. Fontecave, Science 2009, 326, 1384–1387;
- 29bT. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100–102;
- 29cJ. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nat. Chem. 2012, 11, 963–969;
- 29dE. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R. E. Schaak, J. Am. Chem. Soc. 2013, 135, 9267–9270.
- 30
- 30aC. Lei, Y. Wang, Y. Hou, P. Liu, J. Yang, T. Zhang, X. Zhuang, M. Chen, B. Yang, L. Lei, C. Yuan, M. Qiu, X. Feng, Energy Environ. Sci. 2019, 12, 149–156;
- 30bH.-W. Liang, S. Brüller, R. H. Dong, J. Zhang, X. L. Feng, K. Müllen, Nat. Commun. 2015, 6, 7992;
- 30cY.-R. Zheng, P. Wu, M.-R. Gao, X.-L. Zhang, F.-Y. Gao, H.-X. Ju, R. Wu, Q. Gao, R. You, W.-X. Huang, S.-J. Liu, S.-W. Hu, J. Zhu, Z. Li, S.-H. Yu, Nat. Commun. 2018, 9, 2533;
- 30dL. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu, Y. Cao, W. Zhang, Y. Wu, J. Yang, T. Yao, S. Wei, Nat. Catal. 2019, 2, 134–141;
- 30eJ. Kibsgaard, T. F. Jaramillo, F. Besenbacher, Nat. Chem. 2014, 6, 248–253.
- 31
- 31aZ. B. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara, T. F. Jaramillo, Nano Lett. 2011, 11, 4168–4175;
- 31bJ. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis, H. B. Gray, ACS Catal. 2013, 3, 166–169;
- 31cM. A. R. Anjum, H. Y. Jeong, M. H. Lee, H. S. Shin, J. S. Lee, Adv. Mater. 2018, 30, 1707105;
- 31dC. Zhu, A.-L. Wang, W. Xiao, D. Chao, X. Zhang, N. H. Tiep, S. Chen, J. Kang, X. Wang, J. Ding, J. Wang, H. Zhang, H. J. Fan, Adv. Mater. 2018, 30, 1705516.
- 32Z. Chen, Y. Song, J. Cai, X. Zheng, D. Han, Y. Wu, Y. Zang, S. Niu, Y. Liu, J. Zhu, X. Liu, G. Wang, Angew. Chem. Int. Ed. 2018, 57, 5076–5080; Angew. Chem. 2018, 130, 5170–5174.
- 33
- 33aS. A. Lee, T. H. Lee, C. Kim, M. G. Lee, Mi.-J. Choi, H. Park, S. Choi, J. Oh, H. W. Jang, ACS Catal. 2018, 8, 7261–7269;
- 33bH. Shin, H. Xiao, W. A. Goddard III, J. Am. Chem. Soc. 2018, 140, 6745–6748;
- 33cW.-J. Jiang, S. Niu, T. Tang, Q.-H. Zhang, X.-Z. Liu, Y. Zhang, Y.-Y. Chen, J.-H. Li, L. Gu, L.-J. Wan, J.-S. Hu, Angew. Chem. Int. Ed. 2017, 56, 6572–6577; Angew. Chem. 2017, 129, 6672–6677;
- 33dJ. Huang, Y. Sun, X. Du, Y. Zhang, C. Wu, C. Yan, Y. Yan, G. Zou, W. Wu, R. Lu, Y. Li, J. Xiong, Adv. Mater. 2018, 30, 1803367.
- 34
- 34aH. Funke, A. C. Scheinost, M. Chukalina, Phys. Rev. B 2005, 71, 094110;
- 34bZ. Xia, H. Zhang, K. Shen, Y. Qu, Z. Jiang, Phys. B 2018, 542, 12–19;
- 34cW. Chen, J. Pei, C.-T. He, J. Wan, H. Ren, Y. Wang, J. Dong, K. Wu, W.-C. Cheong, J. Mao, X. Zheng, W. Yan, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Adv. Mater. 2018, 30, 1800396.
- 35J. Yin, Q. Fan, Y. Li, F. Cheng, P. Zhou, P. Xi, S. Sun, J. Am. Chem. Soc. 2016, 138, 14546–14549.
- 36
- 36aR. Miao, B. Dutta, S. Sahoo, J. He, W. Zhong, S. A. Cetegen, T. Jiang, S. P. Alpay, S. L. Suib, J. Am. Chem. Soc. 2017, 139, 13604–13607;
- 36bC. Hu, L. Zhang, Z.-J. Zhao, A. Li, X. Chang, J. Gong, Adv. Mater. 2018, 30, 1705538.
- 37
- 37aB. Liu, Y. Wang, H.-Q. Peng, R. Yang, Z. Jiang, X. Zhou, C.-S. Lee, H. Zhao, W. Zhang, Adv. Mater. 2018, 30, 1803144;
- 37bJ. Yu, Y. Guo, S. She, S. Miao, M. Ni, W. Zhou, M. Liu, Z. Shao, Adv. Mater. 2018, 30, 1800047;
- 37cZ. Zhuang, Y. Li, Z. Li, F. Lv, Z. Lang, K. Zhao, L. Zhou, L. Moskaleva, S. Guo, L. Mai, Angew. Chem. Int. Ed. 2018, 57, 496–500; Angew. Chem. 2018, 130, 505–509.