Biomimetic Strain-Stiffening Self-Assembled Hydrogels
Prof. Yiming Wang
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237 Shanghai, China
Search for more papers by this authorProf. Zhi Xu
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237 Shanghai, China
Search for more papers by this authorDr. Matija Lovrak
Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
Search for more papers by this authorVincent A. A. le Sage
Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
Search for more papers by this authorDr. Kai Zhang
Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
Search for more papers by this authorProf. Xuhong Guo
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237 Shanghai, China
Search for more papers by this authorDr. Rienk Eelkema
Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
Search for more papers by this authorDr. Eduardo Mendes
Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
Search for more papers by this authorCorresponding Author
Prof. Jan H. van Esch
Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
Search for more papers by this authorProf. Yiming Wang
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237 Shanghai, China
Search for more papers by this authorProf. Zhi Xu
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237 Shanghai, China
Search for more papers by this authorDr. Matija Lovrak
Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
Search for more papers by this authorVincent A. A. le Sage
Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
Search for more papers by this authorDr. Kai Zhang
Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
Search for more papers by this authorProf. Xuhong Guo
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237 Shanghai, China
Search for more papers by this authorDr. Rienk Eelkema
Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
Search for more papers by this authorDr. Eduardo Mendes
Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
Search for more papers by this authorCorresponding Author
Prof. Jan H. van Esch
Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
Search for more papers by this authorGraphical Abstract
Biomimetic strain-stiffening hydrogels have been prepared through the self-assembly of molecular gelators. On the basis of orthogonal self-assembly of the molecular gelators and lipids, hydrogel networks embedded with liposomes are formed and show strain-stiffening behavior as well, resembling both the structures and mechanical responsiveness of biological tissue.
Abstract
Supramolecular structures with strain-stiffening properties are ubiquitous in nature but remain rare in the lab. Herein, we report on strain-stiffening supramolecular hydrogels that are entirely produced through the self-assembly of synthetic molecular gelators. The involved gelators self-assemble into semi-flexible fibers, which thereby crosslink into hydrogels. Interestingly, these hydrogels are capable of stiffening in response to applied stress, resembling biological intermediate filaments system. Furthermore, strain-stiffening hydrogel networks embedded with liposomes are constructed through orthogonal self-assembly of gelators and phospholipids, mimicking biological tissues in both architecture and mechanical properties. This work furthers the development of biomimetic soft materials with mechanical responsiveness and presents potentially enticing applications in diverse fields, such as tissue engineering, artificial life, and strain sensors.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201911364-sup-0001-misc_information.pdf954.2 KB | Supplementary |
anie201911364-sup-0001-Movie_S1.avi3.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. D. Humphrey, Proc. R. Soc. London Ser. A 2003, 459, 3–46;
- 1bA. R. Bausch, K. Kroy, Nat. Phys. 2006, 2, 231–238;
- 1cK. E. Kasza, A. C. Rowat, J. Y. Liu, T. E. Angelini, C. P. Brangwynne, G. H. Koenderink, D. A. Weitz, Curr. Opin. Cell Biol. 2007, 19, 101–107.
- 2C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, P. A. Janmey, Nature 2005, 435, 191–194.
- 3
- 3aI. K. Piechocka, A. S. G. van Oosten, R. G. M. Breuls, G. H. Koenderink, Biomacromolecules 2011, 12, 2797–2805;
- 3bS. Motte, L. J. Kaufman, Biopolymers 2013, 99, 35–46;
- 3cA. J. Licup, S. Munster, A. Sharma, M. Sheinman, L. M. Jawerth, B. Fabry, D. A. Weitz, F. C. MacKintosh, Proc. Natl. Acad. Sci. USA 2015, 112, 9573–9578;
- 3dS. van Helvert, P. Friedl, ACS Appl. Mater. Interfaces 2016, 8, 21946–21955.
- 4
- 4aM. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, D. A. Weitz, Science 2004, 304, 1301–1305;
- 4bM. L. Gardel, F. Nakamura, J. H. Hartwig, J. C. Crocker, T. P. Stossel, D. A. Weitz, Proc. Natl. Acad. Sci. USA 2006, 103, 1762–1767;
- 4cE. M. Huisman, T. van Dillen, P. R. Onck, E. Van der Giessen, Phys. Rev. Lett. 2007, 99, 208103.
- 5
- 5aQ. Wen, A. Basu, J. P. Winer, A. Yodh, P. A. Janmey, New J. Phys. 2007, 9, 428;
- 5bH. Kang, Q. Wen, P. A. Janmey, J. X. Tang, E. Conti, F. C. MacKintosh, J. Phys. Chem. B 2009, 113, 3799–3805;
- 5cM. R. Falvo, O. V. Gorkun, S. T. Lord, Biophys. Chem. 2010, 152, 15–20.
- 6
- 6aT. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813–817;
- 6bL. L. Yang, X. X. Tan, Z. Q. Wang, X. Zhang, Chem. Rev. 2015, 115, 7196–7239.
- 7O. Goor, S. I. S. Hendrikse, P. Y. W. Dankers, E. W. Meijer, Chem. Soc. Rev. 2017, 46, 6621–6637.
- 8
- 8aF. C. Mackintosh, J. Kas, P. A. Janmey, Phys. Rev. Lett. 1995, 75, 4425–4428;
- 8bP. R. Onck, T. Koeman, T. van Dillen, E. van der Giessen, Phys. Rev. Lett. 2005, 95, 178102;
- 8cJ. S. Palmer, M. C. Boyce, Acta Biomater. 2008, 4, 597–612;
- 8dY. C. Lin, N. Y. Yao, C. P. Broedersz, H. Herrmann, F. C. MacKintosh, D. A. Weitz, Phys. Rev. Lett. 2010, 104, 058101;
- 8eC. P. Broedersz, F. C. MacKintosh, Rev. Mod. Phys. 2014, 86, 995–1036;
- 8fF. Meng, E. M. Terentjev, Soft Matter 2016, 12, 6749–6756.
- 9M. Fernandez-Castano Romera, R. P. M. Lafleur, C. Guibert, I. K. Voets, C. Storm, R. P. Sijbesma, Angew. Chem. Int. Ed. 2017, 56, 8771–8775; Angew. Chem. 2017, 129, 8897–8901.
- 10P. H. Kouwer, M. Koepf, V. A. Le Sage, M. Jaspers, A. M. van Buul, Z. H. Eksteen-Akeroyd, T. Woltinge, E. Schwartz, H. J. Kitto, R. Hoogenboom, S. J. Picken, R. J. Nolte, E. Mendes, A. E. Rowan, Nature 2013, 493, 651–655.
- 11J. Boekhoven, J. M. Poolman, C. Maity, F. Li, L. van der Mee, C. B. Minkenberg, E. Mendes, J. H. van Esch, R. Eelkema, Nat. Chem. 2013, 5, 433–437.
- 12Y. Wang, M. Lovrak, Q. Liu, C. Maity, V. A. A. le Sage, X. Guo, R. Eelkema, J. H. van Esch, J. Am. Chem. Soc. 2019, 141, 2847–2851.
- 13Y. Wang, R. M. de Kruijff, M. Lovrak, X. Guo, R. Eelkema, J. H. van Esch, Angew. Chem. Int. Ed. 2019, 58, 3800–3803; Angew. Chem. 2019, 131, 3840–3843.
- 14P. Terech, R. G. Weiss, Chem. Rev. 1997, 97, 3133–3159.
- 15Y. L. Yang, L. M. Leone, L. J. Kaufman, Biophys. J. 2009, 97, 2051–2060.
- 16
- 16aT. Kato, Science 2002, 295, 2414–2418;
- 16bA. Heeres, C. van der Pol, M. Stuart, A. Friggeri, B. L. Feringa, J. van Esch, J. Am. Chem. Soc. 2003, 125, 14252–14253;
- 16cM. M. Safont-Sempere, G. Fernandez, F. Wurthner, Chem. Rev. 2011, 111, 5784–5814;
- 16dV. M. P. Vieira, L. L. Hay, D. K. Smith, Chem. Sci. 2017, 8, 6981–6990;
- 16eJ. Raeburn, D. J. Adams, Chem. Commun. 2015, 51, 5170–5180.
- 17
- 17aA. Brizard, M. Stuart, K. van Bommel, A. Friggeri, M. de Jong, J. van Esch, Angew. Chem. Int. Ed. 2008, 47, 2063–2066; Angew. Chem. 2008, 120, 2093–2096;
- 17bJ. Boekhoven, A. M. Brizard, M. C. A. Stuart, L. Florusse, G. Raffy, A. Del Guerzo, J. H. van Esch, Chem. Sci. 2016, 7, 6021–6031.
- 18F. Versluis, D. M. van Elsland, S. Mytnyk, D. L. Perrier, F. Trausel, J. M. Poolman, C. Maity, V. A. le Sage, S. I. van Kasteren, J. H. van Esch, R. Eelkema, J. Am. Chem. Soc. 2016, 138, 8670–8673.
- 19J. M. Poolman, C. Maity, J. Boekhoven, L. van der Mee, V. A. A. le Sage, G. J. M. Groenewold, S. I. van Kasteren, F. Versluis, J. H. van Esch, R. Eelkema, J. Mater. Chem. B 2016, 4, 852–858.