In Situ Observation of Dynamic Galvanic Replacement Reactions in Twinned Metallic Nanowires by Liquid Cell Transmission Electron Microscopy
Prof. Dr. Chunqiang Zhuang
Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorHeyang Qi
Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorXing Cheng
Department Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental & Energy Engineering, Beijing University of Technology, 100124 Beijing, P. R. China
Search for more papers by this authorProf. Dr. Ge Chen
Department Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental & Energy Engineering, Beijing University of Technology, 100124 Beijing, P. R. China
Search for more papers by this authorChunlang Gao
Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorProf. Dr. Lihua Wang
Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shaorui Sun
Department Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental & Energy Engineering, Beijing University of Technology, 100124 Beijing, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jin Zou
Materials Engineering and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072 Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaodong Han
Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorProf. Dr. Chunqiang Zhuang
Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorHeyang Qi
Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorXing Cheng
Department Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental & Energy Engineering, Beijing University of Technology, 100124 Beijing, P. R. China
Search for more papers by this authorProf. Dr. Ge Chen
Department Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental & Energy Engineering, Beijing University of Technology, 100124 Beijing, P. R. China
Search for more papers by this authorChunlang Gao
Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorProf. Dr. Lihua Wang
Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shaorui Sun
Department Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental & Energy Engineering, Beijing University of Technology, 100124 Beijing, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jin Zou
Materials Engineering and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072 Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaodong Han
Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorGraphical Abstract
Abstract
Galvanic replacement is a versatile approach to prepare hollow nanostructures with controllable morphology and elemental composition. The primary issue is to identify its fundamental mechanism. In this study, in situ liquid cell transmission electron microscopy was employed to monitor the dynamic reaction process and to explore the mechanism of galvanic replacement. The detailed reaction process was revealed based on in situ experiments in which small Au particles first appeared around Ag nanowires; they coalesced, grew, and adhered to Ag nanowires. After that, small pits grew from the edge of Ag nanowires to form tubular structures, and then extended along the Ag nanowires to obtain hollowed structures. All of our experimental observations from the viewpoint of electron microscopy, combined with DFT calculations, contribute towards an in-depth understanding of the galvanic replacement reaction process and the design of new materials with hollow structures.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201910379-sup-0001-misc_information.pdf2.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Goesmann, C. Feldmann, Angew. Chem. Int. Ed. 2010, 49, 1362–1395; Angew. Chem. 2010, 122, 1402–1437.
- 2J. Park, J. Joo, S. G. Kwon, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed. 2007, 46, 4630; Angew. Chem. 2007, 119, 4714.
- 3Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. Int. Ed. 2009, 48, 60; Angew. Chem. 2009, 121, 62.
- 4Y. Xia, N. J. Halas, MRS Bull. 2005, 30, 338.
- 5B. C. Gates, G. W. Huber, C. L. Marshall, P. N. Ross, J. Siirola, Y. Wang, MRS Bull. 2008, 33, 429.
- 6B. J. Wiley, Z. Wang, J. Wei, Y. Yin, D. H. Cobden, Y. Xia, Nano Lett. 2006, 6, 2273.
- 7X. W. Lou, L. A. Archer, Z. Yang, Adv. Mater. 2008, 20, 3987.
- 8P. Zhang, X. W. Lou, Adv. Mater. 2019, 31, 1900281.
- 9E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu, X. W. Lou, Energy Environ. Sci. 2018, 11, 872.
- 10L. Yu, X. Y. Yu, X. W. Lou, Adv. Mater. 2018, 30, 1800939.
- 11L. Au, X. Lu, Y. Xia, Adv. Mater. 2008, 20, 2517.
- 12A. Mei, M. Chettab, E. Gautron, A. Chaunvin, B. Humbert, J. Mevellec, C. Delacote, D. Thiry, N. Stephant, J. Ding, K. Du, C. H. Choi, P. Y. Tessier, J. Phys. Chem. C 2016, 120, 17652.
- 13C. M. Cobley, Y. Xia, Mater. Sci. Eng. R 2010, 70, 44.
- 14X. Lu, H.-Y. Tuan, J. Chen, Z.-Y. Li, B. A. Korgel, Y. Xia, J. Am. Chem. Soc. 2007, 129, 1733–1742.
- 15Y. Sun, Y. Xia, J. Am. Chem. Soc. 2004, 126, 3892–3901.
- 16X. Xia, Y. Wang, A. Ruditskiy, Y. Xia, Adv. Mater. 2013, 25, 6313–6333.
- 17J. Chen, B. Wiley, J. McLellan, Y. Xiong, Z.-Y. Li, Y. Xia, Nano Lett. 2005, 5, 2058–2062.
- 18M. H. Kim, X. Lu, B. Wiley, E. P. Lee, Y. Xia, J. Phys. Chem. C 2008, 112, 7872–7876.
- 19X. Teng, Q. Wang, P. Liu, W. Han, A. I. Frenkel, Wen, N. Marinkovic, J. C. Hanson, J. A. Rodriguez, J. Am. Chem. Soc. 2008, 130, 1093–1101.
- 20J. Chen, J. M. McLellan, A. Siekkinen, Y. Xiong, Z.-Y. Li, Y. Xia, J. Am. Chem. Soc. 2006, 128, 14776–14777.
- 21D. Seo, H. Song, J. Am. Chem. Soc. 2009, 131, 18210–18211.
- 22W. Zhang, J. Yang, X. Lu, ACS Nano 2012, 6, 7397–7405.
- 23J. Zeng, Q. Zhang, J. Chen, Y. Xia, Nano Lett. 2010, 10, 30–35.
- 24S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, Y. Xia, Adv. Mater. 2007, 19, 3177–3184.
- 25C. M. Cobley, J. Chen, E. C. Cho, L. V. Wang, Y. Xia, Chem. Soc. Rev. 2011, 40, 44–56.
- 26Y. Yang, Q. Zhang, Z. W. Fu, D. Qin, ACS Appl. Mater. Interfaces 2014, 6, 3750.
- 27L. Polavarapu, L. Marzan, Nanoscale 2013, 5, 4355.
- 28Y. Yang, J. Liu, Z. W. Fu, D. Qin, J. Am. Chem. Soc. 2014, 136, 8153.
- 29S. F. Tan, G. Lin, M. Bosman, U. Mirsaidov, C. A. Nijhuis, ACS Nano 2016, 10, 7689.
- 30S. W. Chee, S. F. Tan, Z. Baraissov, M. Bosman, U. Mirsaidov, Nat. Commun. 2017, 8, 1224.
- 31E. A. Sutter, P. W. Sutter, Nanoscale 2017, 9, 1271.
- 32Y. Sun, Y. Wang, Nano Lett. 2011, 11, 4386.
- 33E. Sutter, K. Jungjohann, S. Bliznakov, A. Courty, E. Maisonhaute, S. Tenney, P. Sutter, Nat. Commun. 2014, 5, 4946.
- 34L. Lu, Z. Yan, Z. Cai, D. Zhang, P. Han, X. Cheng, Y. Sun, Nano Lett. 2016, 16, 6555–6559.
- 35C. M. Wang, H. Liao, F. M. Ross, MRS Bull. 2015, 40, 46.
- 36F. M. Ross, Science 2015, 350, 1490.
- 37M. H. Nielsen, S. Aloni, J. J. De Yoreo, Science 2014, 345, 1158.
- 38H.-G. Liao, D. Zherebetskyy, H. Xin, C. Czarnik, P. Ercius, H. Elmlund, M. Pan, L.-W. Wang, H. Zheng, Science 2014, 345, 916.
- 39J. M. Yuk, J. Park, P. Ercius, K. Kim, D. J. Hellebusch, M. F. Crommie, J. Y. Lee, A. Zettl, A. P. Alivisatos, Science 2012, 336, 61.
- 40H. G. Liao, L. K. Cui, S. Whitelam, H. M. Zheng, Science 2012, 336, 1011–1014.
- 41M. J. Williamson, R. M. Tromp, P. M. Vereecken, R. Hull, F. M. Ross, Nat. Mater. 2003, 2, 532–536.
- 42K. W. Noh, Y. Liu, L. Sun, S. J. Dillon, Ultramicroscopy 2012, 116, 34–38.
- 43H. Zheng, S. A. Claridge, A. M. Minor, A. P. Alivisatos, U. Dahmen, Nano Lett. 2009, 9, 2460–2465.
- 44U. M. Mirsaidov, H. Zheng, D. Bhattacharya, Y. Casana, P. Matsudaira, Proc. Natl. Acad. Sci. USA 2012, 109, 7187–7190.
- 45H. L. Xin, H. Zheng, Nano Lett. 2012, 12, 1470–1474.
- 46Y. Liu, K. Tai, S. J. Dillon, Chem. Mater. 2013, 25, 2927–2933.
- 47T. J. Woehl, C. Park, J. E. Evans, I. Arslan, W. D. Ristenpart, N. D. Browning, Nano Lett. 2014, 14, 373–378.
- 48W.-I. Liang, X. Zhang, K. Bustillo, C.-H. Chiu, W.-W. Wu, J. Xu, Y.-H. Chu, H. Zheng, Chem. Mater. 2015, 27, 8146–8152.
- 49J. B. Foresman, C. L. Brooks III, J. Chem. Phys. 1987, 87, 5892.
- 50K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias, R. G. Hennig, J. Chem. Phys. 2014, 140, 084106.