Switching in Metal–Organic Frameworks
Dr. Fahime Bigdeli
Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
These authors contributed equally to this work.
Search for more papers by this authorChristina T. Lollar
Department of Chemistry, Texas A&M University, College Station, TX, 77843 USA
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Ali Morsali
Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
Search for more papers by this authorCorresponding Author
Prof. Dr. Hong-Cai Zhou
Department of Chemistry, Texas A&M University, College Station, TX, 77843 USA
Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843 USA
Search for more papers by this authorDr. Fahime Bigdeli
Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
These authors contributed equally to this work.
Search for more papers by this authorChristina T. Lollar
Department of Chemistry, Texas A&M University, College Station, TX, 77843 USA
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Ali Morsali
Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
Search for more papers by this authorCorresponding Author
Prof. Dr. Hong-Cai Zhou
Department of Chemistry, Texas A&M University, College Station, TX, 77843 USA
Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843 USA
Search for more papers by this authorGraphical Abstract
A switch in time: Although dynamic and flexible metal–organic frameworks (MOFs) have been closely assessed in recent literature, analysis into the subcategory of switchable MOFs has been comparably lacking. By virtue of their steady rise in popularity, MOFs with intriguing, switchable responses to light, temperature, pressure, redox species and guests are surveyed.
Abstract
In recent years, metal–organic frameworks (MOFs) have become an area of intense research interest because of their adjustable pores and nearly limitless structural diversity deriving from the design of different organic linkers and metal structural building units (SBUs). Among the recent great challenges for scientists include switchable MOFs and their corresponding applications. Switchable MOFs are a type of smart material that undergo distinct, reversible, chemical changes in their structure upon exposure to external stimuli, yielding interesting technological applicability. Although the process of switching shares similarities with flexibility, very limited studies have been devoted specifically to switching, while a fairly large amount of research and a number of Reviews have covered flexibility in MOFs. This Review focuses on the properties and general design of switchable MOFs. The switching activity has been delineated based on the cause of the switching: light, spin crossover (SCO), redox, temperature, and wettability.
Conflict of interest
The authors declare no conflict of interest.
References
- 1S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695.
- 2A. Halder, D. Ghoshal, CrystEngComm 2018, 20, 1322.
- 3Y. Sun, H.-C. Zhou, Sci. Technol. Adv. Mater. 2015, 16, 054202.
- 4A. Schneemann, V. Bon, I. Schwedler, S. Kaskel, R. A. Fischer, Chem. Soc. Rev. 2014, 43, 6062.
- 5P. Teo, T. A. Hor, Coord. Chem. Rev. 2011, 255, 273.
- 6V. Safarifard, S. Rodríguez-Hermida, V. Guillerm, I. Imaz, M. Bigdeli, A. A. Tehrani, J. Juanhuix, A. Morsli, M. E. Casco, J. Silvestre-Albero, E. V. Ramos-Fernandez, D. Maspoch, Cryst. Growth Des. 2016, 16, 6016.
- 7A. A. Tehrani, H. Ghasempour, A. Morsali, G. Makhloufi, C. Janiak, Cryst. Growth Des. 2015, 15, 5543.
- 8M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
- 9S. Dissegna, K. Epp, W. R. Heinz, G. Kieslich, R. A. Fischer, Adv. Mater. 2018, 30, 1704501.
- 10X. Zhang, F. X. Llabrés i Xamena, A. Corma, J. Catal. 2009, 265, 155.
- 11Z. Saedi, V. Safarifard, A. Morsali, Microporous Mesoporous Mater. 2016, 229, 51.
- 12M. Y. Masoomi, K. C. Stylianou, A. Morsali, P. Retailleau, D. Maspoch, Cryst. Growth Des. 2014, 14, 2092.
- 13M. Bagheri, M. Y. Masoomi, A. Morsali, Sens. Actuators B 2017, 243, 353.
- 14E. Tahmasebi, M. Y. Masoomi, Y. Yamini, A. Morsali, Inorg. Chem. 2015, 54, 425.
- 15F. Bigdeli, S. Abedi, H. Hosseini-Monfared, A. Morsali, Inorg. Chem. Commun. 2016, 72, 122.
- 16M. Wei, X. Wang, J. Sun, X. Duan, J. Solid State Chem. 2013, 202, 200.
- 17Y.-Q. Mu, B.-F. Zhu, D.-S. Li, D. Guo, J. Zhao, L.-F. Ma, Inorg. Chem. Commun. 2013, 33, 86.
- 18X. Meng, B. Gui, D. Yuan, M. Zeller, C. Wang, Sci. Adv. 2016, 2, e1600480.
- 19P. Deria, J. E. Mondloch, E. Tylianakis, P. Ghosh, W. Bury, R. Q. Snurr, J. T. Hupp, O. K. Farha, J. Am. Chem. Soc. 2013, 135, 16801.
- 20C. T. Lollar, J.-S. Qin, J. Pang, S. Yuan, B. Becker, H.-C. Zhou, Langmuir 2018, 34, 13795–13807.
- 21C. H. Hendon, A. J. Rieth, M. D. Korzynski, M. Dinca, ACS Cent. Sci. 2017, 3, 554.
- 22L. Vanduyfhuys, S. M. J. Rogge, J. Wieme, S. Vandenbrande, G. Maurin, M. Waroquier, V. Van Speybroeck, Nat. Commun. 2018, 9, 204.
- 23S. Castellanos, F. Kapteijn, J. Gascon, CrystEngComm 2016, 18, 4006.
- 24M. D. Manrique-Juárez, S. Rat, L. Salmon, G. Molnár, C. M. Quintero, L. Nicu, H. J. Shepherd, A. Bousseksou, Coord. Chem. Rev. 2016, 308, 395.
- 25O. Drath, C. Boskovic, Coord. Chem. Rev. 2018, 375, 256.
- 26N. Fuentes, A. Martín-Lasanta, L. Á. de Cienfuegos, M. Ribagorda, A. Parra, J. M. Cuerva, Nanoscale 2011, 3, 4003.
- 27B. Gui, X. Meng, Y. Chen, J. Tian, G. Liu, C. Shen, M. Zeller, D. Yuan, C. Wang, Chem. Mater. 2015, 27, 6426.
- 28M. Zhang, M. Bosch, T. Gentle III, H.-C. Zhou, CrystEngComm 2014, 16, 4069.
- 29S. Li, Y. G. Chung, C. M. Simon, R. Q. Snurr, J. Phys. Chem. Lett. 2017, 8, 6135.
- 30M. Wahiduzzaman, S. Wang, B. J. Sikora, C. Serre, G. Maurin, Chem. Commun. 2018, 54, 10812.
- 31V. Bernales, M. A. Ortuno, D. G. Truhlar, C. J. Cramer, L. Gagliardi, ACS Cent. Sci. 2018, 4, 5.
- 32H. Daglar, S. Keskin, J. Phys. Chem. C 2018, 122, 17347.
- 33P. Z. Moghadam, T. Islamoglu, S. Goswami, J. Exley, M. Fantham, C. F. Kaminski, R. Q. Snurr, O. K. Farha, D. Fairen-Jimenez, Nat. Commun. 2018, 9, 1378.
- 34J. Park, Q. Jiang, D. Feng, H.-C. Zhou, Angew. Chem. Int. Ed. 2016, 55, 7188; Angew. Chem. 2016, 128, 7304.
- 35A. Knebel, L. Sundermann, A. Mohmeyer, I. Strauß, S. Friebe, P. Behrens, J. Caro, Chem. Mater. 2017, 29, 3111.
- 36J. W. Brown, B. L. Henderson, M. D. Kiesz, A. C. Whalley, W. Morris, S. Grunder, H. Deng, H. Furukawa, J. I. Zink, J. F. Stoddart, O. M. Yaghi, Chem. Sci. 2013, 4, 2858.
- 37K. Müller, A. Knebel, F. Zhao, D. Bléger, J. Caro, L. Heinke, Chem. Eur. J. 2017, 23, 5434.
- 38L. Pan, G. Liu, H. Li, S. Meng, L. Han, J. Shang, B. Chen, A. E. Platero-Prats, W. Lu, X. Zou, R.-W. Li, J. Am. Chem. Soc. 2014, 136, 17477.
- 39N. Ogihara, N. Ohba, Y. Kishida, Sci. Adv. 2017, 3, e1603103.
- 40C. A. Fernandez, P. C. Martin, T. Schaef, M. E. Bowden, P. K. Thallapally, L. Dang, W. Xu, X. Chen, B. P. McGrail, Sci. Rep. 2014, 4, 6114.
- 41L. Gobbi, P. Seiler, F. Diederich, Angew. Chem. Int. Ed. 1999, 38, 674;
10.1002/(SICI)1521-3773(19990301)38:5<674::AID-ANIE674>3.0.CO;2-0 CAS PubMed Web of Science® Google ScholarAngew. Chem. 1999, 111, 737.
- 42J. Park, L.-B. Sun, Y.-P. Chen, Z. Perry, H.-C. Zhou, Angew. Chem. 2014, 126, 5952.
- 43J. Park, D. Yuan, K. T. Pham, J.-R. Li, A. Yakovenko, H.-C. Zhou, J. Am. Chem. Soc. 2012, 134, 99.
- 44Y. Sagara, T. Kato, Nat. Chem. 2009, 1, 605.
- 45D. G. D. Patel, I. M. Walton, J. M. Cox, C. J. Gleason, D. R. Butzer, J. B. Benedict, Chem. Commun. 2014, 50, 2653.
- 46J. Park, D. Feng, S. Yuan, H.-C. Zhou, Angew. Chem. 2015, 127, 440.
- 47C. L. Jones, A. J. Tansell, T. L. Easun, J. Mater. Chem. A 2016, 4, 6714.
- 48X. Meng, B. Gui, D. Yuan, M. Zeller, C. Wang, Sci. Adv. 2016, 2, e1600480-e.
- 49X. Yu, Z. Wang, M. Buchholz, N. Füllgrabe, S. Grosjean, F. Bebensee, S. Bräse, C. Wöll, L. Heinke, Phys. Chem. Chem. Phys. 2015, 17, 22721.
- 50Z. Wang, S. Grosjean, S. Bräse, L. Heinke, ChemPhysChem 2015, 16, 3779.
- 51A. Modrow, D. Zargarani, R. Herges, N. Stock, Dalton Trans. 2011, 40, 4217.
- 52K. Müller, J. Helfferich, F. Zhao, R. Verma, A. B. Kanj, V. Meded, D. Bléger, W. Wenzel, L. Heinke, Adv. Mater. 2018, 30, 1706551.
- 53H. Meng, C. Zhao, M. Nie, C. Wang, T. Wang, ACS Appl. Mater. Interfaces 2018, 10, 32607.
- 54N. Yanai, T. Uemura, M. Inoue, R. Matsuda, T. Fukushima, M. Tsujimoto, S. Isoda, S. Kitagawa, J. Am. Chem. Soc. 2012, 134, 4501.
- 55R. Lyndon, K. Konstas, B. P. Ladewig, P. D. Southon, C. J. Kepert, M. R. Hill, Angew. Chem. Int. Ed. 2013, 52, 3695; Angew. Chem. 2013, 125, 3783.
- 56I. M. Walton, J. M. Cox, J. A. Coppin, C. M. Linderman, D. G. Patel, J. B. Benedict, Chem. Commun. 2013, 49, 8012.
- 57F. Luo, C. B. Fan, M. B. Luo, X. L. Wu, Y. Zhu, S. Z. Pu, W.-Y. Xu, G.-C. Guo, Angew. Chem. Int. Ed. 2014, 53, 9298; Angew. Chem. 2014, 126, 9452.
- 58I. M. Walton, J. M. Cox, T. B. Mitchell, N. P. Bizier, J. B. Benedict, CrystEngComm 2016, 18, 7972.
- 59B. J. Furlong, M. J. Katz, J. Am. Chem. Soc. 2017, 139, 13280.
- 60M. Herder, B. M. Schmidt, L. Grubert, M. Patzel, J. Schwarz, S. Hecht, J. Am. Chem. Soc. 2015, 137, 2738.
- 61F. Zhang, X. Zou, W. Feng, X. Zhao, X. Jing, F. Sun, H. Ren, G. Zhu, J. Mater. Chem. 2012, 22, 25019.
- 62K. Healey, W. Liang, P. D. Southon, T. L. Church, D. M. D′Alessandro, J. Mater. Chem. A 2016, 4, 10816.
- 63S. Garg, H. Schwartz, M. Kozlowska, A. B. Kanj, K. Muller, W. Wenzel, U. Ruschewitz, L. Heinke, Angew. Chem. Int. Ed. 2019, 58, 1193; Angew. Chem. 2019, 131, 1205.
- 64L. L. Gong, X. F. Feng, F. Luo, X. F. Yi, A. M. Zheng, Green Chem. 2016, 18, 2047.
- 65Q. Chen, J. Sun, P. Li, I. Hod, P. Z. Moghadam, Z. S. Kean, R. Q. Snurr, J. T. Hupp, O. K. Farha, J. F. Stoddart, J. Am. Chem. Soc. 2016, 138, 14242.
- 66S. Yuan, X. Sun, J. Pang, C. Lollar, J.-S. Qin, Z. Perry, E. Joseph, X. Wang, Y. Fang, M. Bosch, D. Sun, D. Liu, H.-C. Zhou, Joule 2017, 1, 806.
- 67S. Brooker, Chem. Soc. Rev. 2015, 44, 2880.
- 68Y. S. Koo, J. R. Galán-Mascarós, Adv. Mater. 2014, 26, 6785.
- 69“Light-induced spin crossover and the high-spin→ low-spin relaxation”: A. Hauser, Spin Crossover in Transition Metal Compounds II, Springer, Berlin, 2004, pp. 155–198.
- 70Z.-P. Ni, J.-L. Liu, M. N. Hoque, W. Liu, J.-Y. Li, Y.-C. Chen, M.-L. Tong, Coord. Chem. Rev. 2017, 335, 28.
- 71V. Niel, A. L. Thompson, M. C. Munoz, A. Galet, A. E. Goeta, J. A. Real, Angew. Chem. Int. Ed. 2003, 42, 3760; Angew. Chem. 2003, 115, 3890.
- 72K. Tarafder, S. Kanungo, P. M. Oppeneer, T. Saha-Dasgupta, Phys. Rev. Lett. 2012, 109, 077203.
- 73F.-L. Liu, D. Li, L.-J. Su, J. Tao, Dalton Trans. 2018, 47, 1407.
- 74X. Wang, C. Chi, K. Zhang, Y. Qian, K. M. Gupta, Z. Kang, J. Jiang, D. Zhao, Nat. Commun. 2017, 8, 14460.
- 75S. Ma, D. Sun, X.-S. Wang, H.-C. Zhou, Angew. Chem. Int. Ed. 2007, 46, 2458; Angew. Chem. 2007, 119, 2510.
- 76S. Nagata, K. Kokado, K. Sada, Chem. Commun. 2015, 51, 8614.
- 77A. U. Ortiz, A. Boutin, K. J. Gagnon, A. Clearfield, F.-X. Coudert, J. Am. Chem. Soc. 2014, 136, 11540.
- 78C. J. Bruns, J. F. Stoddart, Acc. Chem. Res. 2014, 47, 2186.
- 79S. Zahn, J. W. Canary, Angew. Chem. Int. Ed. 1998, 37, 305;
10.1002/(SICI)1521-3773(19980216)37:3<305::AID-ANIE305>3.0.CO;2-T CAS PubMed Web of Science® Google ScholarAngew. Chem. 1998, 110, 321.
- 80B. Gui, X. Meng, Y. Chen, J. Tian, G. Liu, C. Shen, M. Zeller, D. Yuan, C. Wang, Chem. Mater. 2015, 27, 6426.
- 81S. A. A. Razavi, M. Y. Masoomi, A. Morsali, Chem. Eur. J. 2017, 23, 12559.
- 82Z. Wang, A. Knebel, S. Grosjean, D. Wagner, S. Bräse, C. Wöll, J. Caro, L. Heinke, Nat. Commun. 2016, 7, 13872.
- 83P. R. McGonigal, P. Deria, I. Hod, P. Z. Moghadam, A.-J. Avestro, N. E. Horwitz, I. C. Gibbs-Hall, A. K. Blackburn, D. Chen, Y. Y. Botros, M. R. Wasielewski, R. Q. Snurr, J. T. Hupp, O. K. Farha, J. F. Stoddart, Proc. Natl. Acad. Sci. USA 2015, 112, 11161.
- 84J. Sun, Y. Wu, Z. Liu, D. Cao, Y. Wang, C. Cheng, D. Chen, M. R. Wasielewski, J. F. Stoddart, J. Phys. Chem. A 2015, 119, 6317.
- 85Q. Chen, J. Sun, P. Li, I. Hod, P. Z. Moghadam, Z. S. Kean, R. Q. Snurr, J. T. Hupp, O. K. Farha, J. F. Stoddart, J. Am. Chem. Soc. 2016, 138, 14242.
- 86J. K. Sun, L.-X. Cai, Y.-J. Chen, Z.-H. Li, J. Zhang, Chem. Commun. 2011, 47, 6870.
- 87A. Troisi, M. A. Ratner, Nano Lett. 2004, 4, 591.
- 88S. Angelos, N. M. Khashab, Y.-W. Yang, A. Trabolsi, H. A. Khatib, J. F. Stoddart, J. I. Zink, J. Am. Chem. Soc. 2009, 131, 12912.
- 89M. D. Allendorf, M. E. Foster, F. Leonard, V. Stavila, P. L. Feng, F. P. Doty, K. Leong, E. Y. Ma, S. R. Johnston, A. A. Talin, J. Phys. Chem. Lett. 2015, 6, 1182.
- 90A. Tissot, X. Kesse, S. Giannopoulou, I. Stenger, L. Binet, E. Riviere, C. Serre, Chem. Commun. 2019, 55, 194.
- 91X.-H. Wu, P. Luo, Z. Wei, Y.-Y. Li, R.-W. Huang, X.-Y. Dong, K. Li, S.-Q. Zang, B. Z. Tang, Adv. Sci. 2019, 6, 1801304.
- 92F.-X. Coudert, Chem. Mater. 2015, 27, 1905–1916.
- 93O. S. Bushuyev, T. Friscic, C. J. Barrett, CrystEngComm 2016, 18, 7204.
- 94P. R. McGonigal, P. Deria, I. Hod, P. Z. Moghadam, A.-J. Avestro, N. E. Horwitz, I. C. Gibbs-Hall, A. K. Blackburn, D. Chen, Y. Y. Botros, M. R. Wasielewski, R. Q. Snurr, J. T. Hupp, O. K. Farha, J. F. Stoddart, Proc. Natl. Acad. Sci. USA 2015, 112, 11161.
- 95X. Yang, D. Yan, Chem. Sci. 2016, 7, 4519.
- 96S. Krause, V. Bon, I. Senkovska, U. Stoeck, D. Wallacher, D. M. Többens, S. Zander, R. S. Pillai, G. Maurin, F.-X. Coudert, S. Kaskel, Nature 2016, 532, 348.
- 97S. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano, H. Tokoro, Nat. Chem. 2011, 3, 564.
- 98J. S. Kahn, L. Freage, N. Enkin, M. A. A. Garcia, I. Willner, Adv. Mater. 2017, 29, 1602782.
- 99P. D. Southon, L. Liu, E. A. Fellows, D. J. Price, G. J. Halder, K. W. Chapman, B. Moubaraki, K. S. Murray, J.-F. Létardm, C. J. Kepert, J. Am. Chem. Soc. 2009, 131, 10998.
- 100X. Yang, D. Yan, J. Mater. Chem. C 2017, 5, 7898.
- 101P. Freund, I. Senkovska, S. Kaskel, ACS Appl. Mater. Interfaces 2017, 9, 43782.
- 102C. H. Pham, F. Paesani, J. Phys. Chem. Lett. 2016, 7, 4022.