Rotational Signatures of Dispersive Stacking in the Formation of Aromatic Dimers
Mariyam Fatima
FS-SMP, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany
Search for more papers by this authorDr. Amanda L. Steber
FS-SMP, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany
Search for more papers by this authorAnja Poblotzki
Institut für Physikalische Chemie, Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
Search for more papers by this authorDr. Cristóbal Pérez
FS-SMP, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany
Search for more papers by this authorDr. Sabrina Zinn
FS-SMP, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Melanie Schnell
FS-SMP, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany
Search for more papers by this authorMariyam Fatima
FS-SMP, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany
Search for more papers by this authorDr. Amanda L. Steber
FS-SMP, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany
Search for more papers by this authorAnja Poblotzki
Institut für Physikalische Chemie, Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
Search for more papers by this authorDr. Cristóbal Pérez
FS-SMP, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany
Search for more papers by this authorDr. Sabrina Zinn
FS-SMP, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Melanie Schnell
FS-SMP, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany
Search for more papers by this authorGraphical Abstract
Use the force: A combined rotational spectroscopic and quantum-chemical study on diphenyl ether, dibenzofuran, and fluorene determined the influence of structural flexibility and the presence of heteroatoms on aromatic dimer formation. This furthers our understanding of the first steps of molecular aggregation in aromatic systems.
Abstract
The aggregation of aromatic species is dictated by inter- and intramolecular forces. Not only is characterizing these forces in aromatic growth important for understanding grain formation in the interstellar medium, but it is also imperative to comprehend biological functions. We report a combined rotational spectroscopic and quantum-chemical study on three homo-dimers, comprising of diphenyl ether, dibenzofuran, and fluorene, to analyze the influence of structural flexibility and the presence of heteroatoms on dimer formation. The structural information obtained shows clear similarities between the dimers, despite their qualitatively different molecular interactions. All dimers are dominated by dispersion interactions, but the dibenzofuran dimer is also influenced by repulsion between the free electron pairs of the oxygen atoms and the π-clouds. This study lays the groundwork for understanding the first steps of molecular aggregation in systems with aromatic residues.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201812556-sup-0001-misc_information.pdf6.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. J. Stone, The Theory of Intermolecular Forces, Clarendon, Oxford, 1997.
- 2
- 2aJ. N. Israelachvili, Intermolecular and Surface Forces, Elsevier Science, Amsterdam, 2011;
- 2bM. A. Strauss, H. A. Wegner, Eur. J. Org. Chem. 2019, 295–302;
- 2cA. Zehnacker, M. A. Suhm, Angew. Chem. Int. Ed. 2008, 47, 6970–6992; Angew. Chem. 2008, 120, 7076–7100;
- 2dA. S. Mahadevi, G. N. Sastry, Chem. Rev. 2016, 116, 2775–2825;
- 2eE. A. Meyer, R. K. Castellano, F. Diederich, Angew. Chem. Int. Ed. 2003, 42, 1210–1250; Angew. Chem. 2003, 115, 1244–1287;
- 2fL. M. Salonen, M. Ellermann, F. Diederich, Angew. Chem. Int. Ed. 2011, 50, 4808–4842; Angew. Chem. 2011, 123, 4908–4944;
- 2gS. Tsuzuki, A. Fujii, Phys. Chem. Chem. Phys. 2008, 10, 2584–2594;
- 2hA. Fujii, H. Hayashi, J. W. Park, T. Kazama, N. Mikami, S. Tsuzuki, Phys. Chem. Chem. Phys. 2011, 13, 14131–14141;
- 2iO. Takahashi, Y. Kohno, M. Nishio, Chem. Rev. 2010, 110, 6049–6076;
- 2jJ. W. G. Bloom, R. K. Raju, S. E. Wheeler, J. Chem. Theory Comput. 2012, 8, 3167–3174;
- 2kEditorial, Phys. Chem. Chem. Phys. 2008, 10, 2581–2583.
- 3
- 3aF. Dietrich, D. Bernhard, M. Fatima, C. Pérez, M. Schnell, M. Gerhards, Angew. Chem. Int. Ed. 2018, 57, 9534–9537; Angew. Chem. 2018, 130, 9678–9682;
- 3bS. R. Domingos, C. Pérez, C. Medcraft, P. Pinacho, M. Schnell, Phys. Chem. Chem. Phys. 2016, 18, 16682–16689;
- 3cN. A. Seifert, I. A. Finneran, C. Perez, D. P. Zaleski, J. L. Neill, A. L. Steber, R. D. Suenram, A. Lesarri, S. T. Shipman, B. H. Pate, J. Mol. Spectrosc. 2015, 312, 13–21.
- 4J. P. Wagner, P. R. Schreiner, Angew. Chem. Int. Ed. 2015, 54, 12274–12296; Angew. Chem. 2015, 127, 12446–12471.
- 5
- 5aJ. A. Frey, C. Holzer, W. Klopper, S. Leutwyler, Chem. Rev. 2016, 116, 5614–5641;
- 5bC. F. R. A. C. Lima, M. A. A. Rocha, L. R. Gomes, J. N. Low, A. M. S. Silva, L. M. N. B. F. Santos, Chem. Eur. J. 2012, 18, 8934–8943.
- 6
- 6aP. Hobza, H. L. Selzle, E. W. Schlag, J. Am. Chem. Soc. 1994, 116, 3500–3506;
- 6bA. van der Avoird, R. Podeszwa, K. Szalewicz, C. Leforestier, R. van Harrevelt, P. R. Bunker, M. Schnell, G. von Helden, G. Meijer, Phys. Chem. Chem. Phys. 2010, 12, 8219–8240;
- 6cK. C. Janda, J. C. Hemminger, J. S. Winn, S. E. Novick, S. J. Harris, W. Klemperer, J. Chem. Phys. 1975, 63, 1419–1421;
- 6dB. F. Henson, G. V. Hartland, V. A. Venturo, P. M. Felker, J. Chem. Phys. 1992, 97, 2189–2208;
- 6eE. Arunan, H. S. Gutowsky, J. Chem. Phys. 1993, 98, 4294–4296;
- 6fC. D. Pibel, J. Am. Chem. Soc. 1999, 121, 10669-10669;
- 6gR. Podeszwa, R. Bukowski, K. Szalewicz, J. Phys. Chem. A 2006, 110, 10345–10354.
- 7M. Schnell, U. Erlekam, P. R. Bunker, G. von Helden, J. U. Grabow, G. Meijer, A. van der Avoird, Angew. Chem. Int. Ed. 2013, 52, 5180–5183; Angew. Chem. 2013, 125, 5288–5292.
- 8A. L. Steber, C. Pérez, B. Temelso, G. C. Shields, A. M. Rijs, B. H. Pate, Z. Kisiel, M. Schnell, J. Phys. Chem. Lett. 2017, 8, 5744–5750.
- 9
- 9aG. B. Park, R. W. Field, J. Chem. Phys. 2016, 144, 200901–200901;
- 9bC. Pérez, M. T. Muckle, D. P. Zaleski, N. A. Seifert, B. Temelso, G. C. Shields, Z. Kisiel, B. H. Pate, Science 2012, 336, 897–901;
- 9cC. Pérez, J. C. López, S. Blanco, M. Schnell, J. Phys. Chem. Lett. 2016, 7, 4053–4058;
- 9dS. T. Shipman, J. L. Neill, R. D. Suenram, M. T. Muckle, B. H. Pate, J. Phys. Chem. Lett. 2011, 2, 443–448;
- 9eE. J. Cocinero, A. Lesarri, P. Écija, Á. Cimas, B. G. Davis, F. J. Basterretxea, J. A. Fernández, F. Castaño, J. Am. Chem. Soc. 2013, 135, 2845–2852.
- 10
- 10aH. Saigusa, M. Itoh, J. Phys. Chem. 1985, 89, 5486–5488;
- 10bT. Chakraborty, E. C. Lim, Chem. Phys. Lett. 1993, 207, 99–104;
- 10cJ. Wessel, S. Beck, C. Highstrete, J. Chem. Phys. 1994, 101, 10292–10302;
- 10dW. T. Yip, D. H. Levy, J. Phys. Chem. 1996, 100, 11539–11545.
- 11D. Schmitz, V. Alvin Shubert, T. Betz, M. Schnell, J. Mol. Spectrosc. 2012, 280, 77–84.
- 12
- 12aT. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, C. D. Sherrill, J. Chem. Phys. 2014, 140, 094106;
- 12bB. Jeziorski, R. Moszynski, K. Szalewicz, Chem. Rev. 1994, 94, 1887–1930.
- 13J. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J. P. Piquemal, D. N. Beratan, W. Yang, J. Chem. Theory Comput. 2011, 7, 625–632.