Mechanistic Studies in Photocatalysis
Luca Buzzetti
ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
These authors contributed equally to this work.
Search for more papers by this authorDr. Giacomo E. M. Crisenza
ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Paolo Melchiorre
ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
ICREA—Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain
IIT—Istituto Italiano di Tecnologia, Laboratory of Asymmetric Catalysis and Photochemistry, Via Morego 30, 16163 Genoa, Italy
Search for more papers by this authorLuca Buzzetti
ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
These authors contributed equally to this work.
Search for more papers by this authorDr. Giacomo E. M. Crisenza
ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Paolo Melchiorre
ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
ICREA—Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain
IIT—Istituto Italiano di Tecnologia, Laboratory of Asymmetric Catalysis and Photochemistry, Via Morego 30, 16163 Genoa, Italy
Search for more papers by this authorGraphical Abstract
Lighting the (reaction) path: Photoredox and photocatalysis have recently provided fresh opportunities to expand the potential of organic synthesis. So far, innovation has mainly been driven by the quest for novel reactivities, often at the expense of a thorough mechanistic understanding. But these fields are now entering a more mature phase where the combination of experimental and mechanistic studies will play a dominant role in sustaining further innovation.
Abstract
The fast-moving fields of photoredox and photocatalysis have recently provided fresh opportunities to expand the potential of synthetic organic chemistry. Advances in light-mediated processes have mainly been guided so far by empirical findings and the quest for reaction invention. The general perception, however, is that photocatalysis is entering a more mature phase where the combination of experimental and mechanistic studies will play a dominant role in sustaining further innovation. This Review outlines the key mechanistic studies to consider when developing a photochemical process, and the best techniques available for acquiring relevant information. The discussion will use selected case studies to highlight how mechanistic investigations can be instrumental in guiding the invention and development of synthetically useful photocatalytic transformations.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201809984-sup-0001-misc_information.pdf9.8 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1a Handbook of Synthetic Photochemistry (Eds.: ), Wiley-VCH, Weinheim, 2010;
- 1bT. P. Yoon, M. A. Ischay, J. Du, Nat. Chem. 2010, 2, 527–532.
- 2
- 2a Modern molecular photochemistry of organic molecules (Eds.: ), University Science Books, Sausalito, 2010;
- 2b Photochemistry of organic compounds: from concepts to practice (Eds.: ), Wiley, Hoboken, 2009;
- 2c Photochemistry: Past, Present and Future (Ed.: ), Springer, Berlin, 2016.
- 3
- 3aG. Ciamician, Science 1912, 36, 385–394;
- 3bG. Ciamician, Bull. Soc. Chim. Fr. 1908, 3–4, i-xxvii;
- 3cE. Paternò, Gazz. Chim. Ital. 1914, 44, 31.
- 4D. Nicewicz, D. W. C. MacMillan, Science 2008, 322, 77–80.
- 5M. A. Ischay, M. E. Anzovino, J. Du, T. P. Yoon, J. Am. Chem. Soc. 2008, 130, 12886–12887.
- 6J. M. R. Narayanam, J. W. Tucker, C. R. J. Stephenson, J. Am. Chem. Soc. 2009, 131, 8756–8757.
- 7M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81, 6898–6926.
- 8
- 8aL. Marzo, S. K. Pagire, O. Reiser, B. König, Angew. Chem. Int. Ed. 2018, 57, 10034–10072; Angew. Chem. 2018, 130, 10188–10228;
- 8bD. M. Schultz, T. P. Yoon, Science 2014, 343, 1239176;
- 8cN. Hoffmann, Chem. Rev. 2008, 108, 1052–1103.
- 9
- 9aD. A. DiRocco, K. Dykstra, S. Krska, P. Vachal, D. V. Conway, M. Tudge, Angew. Chem. Int. Ed. 2014, 53, 4802–4806; Angew. Chem. 2014, 126, 4902–4906;
- 9bC. A. Huff, R. D. Cohen, K. D. Dykstra, E. Streckfuss, D. A. DiRocco, S. W. Krska, J. Org. Chem. 2016, 81, 6980–6987;
- 9cA. ElMarrouni, C. B. Ritts, J. Balsells, Chem. Sci. 2018, 9, 6639–6646.
- 10
- 10a Encyclopedia of Radicals in Chemistry, Biology and Materials (Eds.: ), Wiley-VCH, Weinheim, 2014;
- 10bM. Yan, J. C. Lo, J. T. Edwards, P. S. Baran, J. Am. Chem. Soc. 2016, 138, 12692–12714.
- 11The IUPAC “Gold Book” defines a catalyst as “a substance that increases the rate of a reaction without modifying the overall standard Gibbs energy change”. This implies that, in a general sense, a catalyst accelerates a reaction that proceeds spontaneously with negative Gibbs energy change, that is, catalysis is limited to thermodynamically possible reactions. In contrast, photocatalysis can promote energy-storing reactions (positive Gibbs energy change), for example, splitting water into hydrogen and oxygen. In this sense, “photocatalysis” diverges from the concept of “catalysis”. For an insightful discussion, see: D. Ravelli, S. Protti, A. Albini, Molecules 2015, 20, 1527–1542.
- 12D. Staveness, I. Bosque, C. R. J. Stephenson, Acc. Chem. Res. 2016, 49, 2295–2306.
- 13A. Studer, D. P. Curran, Angew. Chem. Int. Ed. 2016, 55, 58–102; Angew. Chem. 2016, 128, 58–106.
- 14
- 14aS. P. Pitre, C. D. McTiernan, J. C. Scaiano, Acc. Chem. Res. 2016, 49, 1320–1330;
- 14bM. Marchini, G. Bergamini, P. G. Cozzi, P. Ceroni, V. Balzani, Angew. Chem. Int. Ed. 2017, 56, 12820–12821; Angew. Chem. 2017, 129, 12996–12997;
- 14cI. Ghosh, J. I. Bardagi, B. König, Angew. Chem. Int. Ed. 2017, 56, 12822–12824; Angew. Chem. 2017, 129, 12998–13000.
- 15
- 15a Photochemistry: A Modern Theoretical Perspective (Eds.: ), Springer International Publishing, Cham, 2018;
- 15b Photochemically-generated intermediates in synthesis (Eds.: ), Wiley, Hoboken, 2013;
- 15c Principles of fluorescence spectroscopy (Ed.: ), Springer, Heidelberg, 2006;
- 15d Fundamentals of Photoinduced Electron Transfer (Ed.: ), Wiley-VCH, Weinheim, 1993.
- 16
- 16aM. Baker, D. Penny, Nature 2016, 533, 452–545;
- 16bM. M. Cooper, J. Chem. Educ. 2018, 95, 1–2.
- 17For a thorough discussion about the development of illumination apparatus, see Ref. [1a], pp. 2–10.
- 18C. Le, M. K. Wismer, Z.-C. Shi, R. Zhang, D. V. Conway, G. Li, P. Vachal, I. W. Davies, D. W. C. MacMillan, ACS Cent. Sci. 2017, 3, 647–653.
- 19The Grotthuss–Draper Law states that only light which is absorbed by a system can cause a photochemical change; for a historical overview see: A. Albini, Photochem. Photobiol. Sci. 2016, 15, 319–324.
- 20For a discussion about solar photochemical synthesis, see:
- 20aM. Oelgemöller, Chem. Rev. 2016, 116, 9664–9682; For recent examples:
- 20bA. Tröster, R. Alonso, A. Bauer, T. Bach, J. Am. Chem. Soc. 2016, 138, 7808–7811;
- 20cM. Okada, T. Fukuyama, K. Yamada, I. Ryu, D. Ravelli, M. Fagnoni, Chem. Sci. 2014, 5, 2893–2898;
- 20dN. Ishida, Y. Shimamoto, M. Murakami, Angew. Chem. Int. Ed. 2012, 51, 11750–11752; Angew. Chem. 2012, 124, 11920–11922.
- 21For a brief introduction about the topic, see: A. G. Griesbeck, N. Maptue, S. Bondock, M. Oelgemöller, Photochem. Photobiol. Sci. 2003, 2, 450–451.
- 22M. Silvi, P. Melchiorre, Nature 2018, 554, 41–49.
- 23
- 23aJ. Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C. MacMillan, Nat. Rev. Chem. 2017, 1, 0052.
- 24For a recent discussion about flow photochemistry, see:
- 24aD. Cambié, C. Bottecchia, N. J. W. Straathof, V. Hessel, T. Noël, Chem. Rev. 2016, 116, 10276–10341; For recent examples, see:
- 24bJ. W. Beatty, J. J. Douglas, R. Miller, R. C. McAtee, K. P. Cole, C. R. J. Stephenson, Chem 2016, 1, 456–472;
- 24cH. Seo, M. H. Katcher, T. F. Jamison, Nat. Chem. 2017, 9, 453–456; For a recent example of the use of falling film reactors, see:
- 24dO. Shvydkiv, K. Jähnisch, N. Steinfeldt, A. Yavorskyy, M. Oelgemöller, Catal. Today 2018, 308, 102–118.
- 25L. D. Elliott, J. P. Knowles, P. J. Koovits, K. G. Maskill, M. J. Ralph, G. Lejeune, L. J. Edwards, R. I. Robinson, I. R. Clemens, B. Cox, D. D. Pascoe, G. Koch, M. Eberle, M. B. Berry, K. I. Booker-Milburn, Chem. Eur. J. 2014, 20, 15226–15232.
- 26For a review about the chemical applications of 3D-printing technologies, see:
- 26aA. Ambrosi, M. Pumera, Chem. Soc. Rev. 2016, 45, 2740–2755; For selected examples, see:
- 26bM. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. T. Cooper, R. W. Bowman, T. Vilbrandt, L. Cronin, Nat. Chem. 2012, 4, 349–354;
- 26cP. J. Kitson, G. Marie, J.-P. Francoia, S. S. Zalesskiy, R. C. Sigerson, J. S. Mathieson, L. Cronin, Science 2018, 359, 314–319.
- 27D. Cambié, F. Zhao, V. Hessel, M. G. Debije, T. Noël, Angew. Chem. Int. Ed. 2017, 56, 1050–1054; Angew. Chem. 2017, 129, 1070–1074.
- 28T. P. Nicholls, J. C. Robertson, M. G. Gardiner, A. C. Bissember, Chem. Commun. 2018, 54, 4589–4592.
- 29A. Juris, S. Barigelletti, S. Campagna, V. Balzani, P. Belser, A. von Zelewsky, Coord. Chem. Rev. 1988, 84, 85–277.
- 30E. Arceo, I. D. Jurberg, A. Álvarez-Fernández, P. Melchiorre, Nat. Chem. 2013, 5, 750–756.
- 31
- 31aR. S. Mulliken, J. Phys. Chem. 1952, 56, 811–824; for reviews:
- 31bR. Foster, J. Phys. Chem. 1980, 84, 2135–2141;
- 31cS. V. Rosokha, J. K. Kochi, Acc. Chem. Res. 2008, 41, 641–653.
- 32R. Brimioulle, D. Lenhart, M. M. Maturi, T. Bach, Angew. Chem. Int. Ed. 2015, 54, 3872–3890; Angew. Chem. 2015, 127, 3944–3963.
- 33R. Brimioulle, T. Bach, Science 2013, 342, 840–843.
- 34X. Huang, T. R. Quinn, K. Harms, R. D. Webster, L. Zhang, O. Wiest, E. Meggers, J. Am. Chem. Soc. 2017, 139, 9120–9123.
- 35 Fundamentals of Photoinduced Electron Transfer (Ed.: ), Wiley-VCH, Weinheim, 1993.
- 36The redox potentials, in the ground and excited state, of the most widely used photoredox catalysts can be found in the literature, see:
- 36aC. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322–5363;
- 36bD. M. Arias-Rotondo, J. K. McCusker, Chem. Soc. Rev. 2016, 45, 5803–5820;
- 36cS. P. Pitre, C. D. McTiernan, J. C. Scaiano, ACS Omega 2016, 1, 66–76;
- 36dN. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075–10166.
- 37H. G. Roth, N. A. Romero, D. A. Nicewicz, Synlett 2016, 27, 714–723.
- 38N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877–910.
- 39G. A. Mabbott, J. Chem. Educ. 1983, 60, 697–702.
- 40For selected examples, see:
- 40aM.-H. Baik, R. A. Friesner, J. Phys. Chem. A 2002, 106, 7407–7412;
- 40bY. Fu, L. Liu, H.-Z. Yu, Y.-M. Wang, Q.-X. Guo, J. Am. Chem. Soc. 2005, 127, 7227–7234.
- 41For selected studies for redox potential determination using the “redox equilibrium method”, see:
- 41aG. Guirado, C. N. Fleming, T. G. Lingenfelter, M. L. Williams, H. Zuilhof, J. P. Dinnocenzo, J. Am. Chem. Soc. 2004, 126, 14086–14094;
- 41bP. B. Merkel, P. Luo, J. P. Dinnocenzo, S. Farid, J. Org. Chem. 2009, 74, 5163–5173;
- 41cP. Luo, A. M. Feinberg, G. Guirado, S. Farid, J. P. Dinnocenzo, J. Org. Chem. 2014, 79, 9297–9304.
- 42S. Montanaro, D. Ravelli, D. Merli, M. Fagnoni, A. Albini, Org. Lett. 2012, 14, 4218–4221.
- 43
- 43aM. D. Tzirakis, I. N. Lykakis, M. Orfanopoulos, Chem. Soc. Rev. 2009, 38, 2609–2621;
- 43bD. Ravelli, S. Protti, M. Fagnoni, Acc. Chem. Res. 2016, 49, 2232–2242.
- 44J. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki, Chem. Rev. 2008, 108, 2265–2299.
- 45
- 45aJ. Davies, S. G. Booth, S. Essafi, R. A. W. Dryfe, D. Leonori, Angew. Chem. Int. Ed. 2015, 54, 14017–14021; Angew. Chem. 2015, 127, 14223–14227;
- 45bJ. Davies, N. S. Sheikh, D. Leonori, Angew. Chem. Int. Ed. 2017, 56, 13361–13365; Angew. Chem. 2017, 129, 13546–13550.
- 46D. P. Haria, B. König, Chem. Commun. 2014, 50, 6688–6699.
- 47A. Joshi-Pangu, F. Lévesque, H. G. Roth, S. F. Oliver, L.-C. Campeau, D. Nicewicz, D. A. DiRocco, J. Org. Chem. 2016, 81, 7244–7249.
- 48M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230–13319.
- 49M. Riener, D. A. Nicewicz, Chem. Sci. 2013, 4, 2625–2629.
- 50
- 50aM. Silvi, C. Verrier, Y. P. Rey, L. Buzzetti, P. Melchiorre, Nat. Chem. 2017, 9, 868–873;
- 50bD. Mazzarella, G. E. M. Crisenza, P. Melchiorre, J. Am. Chem. Soc. 2018, 140, 8439–8443;
- 50cŁ. Woźniak, G. Magagnano, P. Melchiorre, Angew. Chem. Int. Ed. 2018, 57, 1068–1072; Angew. Chem. 2018, 130, 1080–1084.
- 51K. L. Jensen, G. Dickmeiss, H. Jiang, Ł. Albrecht, K. A. Jørgensen, Acc. Chem. Res. 2012, 45, 248–264.
- 52 Photochemistry and photophysics: concepts, research, applications (Eds.: ), Wiley-VCH, Weinheim, 2014.
- 53For recent articles about the topic, see:
- 53aS. Farid, J. P. Dinnocenzo, P. B. Merkel, R. H. Young, D. Shukla, G. Guirado, J. Am. Chem. Soc. 2011, 133, 11580–11587;
- 53bA. Rosspeintner, G. Angulo, E. Vauthey, J. Am. Chem. Soc. 2014, 136, 2026–2032.
- 54For selected examples, see:
- 54aM.-H. Baik, R. A. Friesner, J. Phys. Chem. A 2002, 106, 7407–7412;
- 54bY. Fu, L. Liu, H.-Z. Yu, Y.-M. Wang, Q.-X. Guo, J. Am. Chem. Soc. 2005, 127, 7227–7234.
- 55For selected examples, see:
- 55aW. E. Jones, M. A. Fox, J. Phys. Chem. 1994, 98, 5095–5099;
- 55bN. Oda, K. Tsuji, A. Ichimura, Anal. Sci. 2001, 17, 375–378.
- 56J. Jung, J. Kim, G. Park, Y. You, E. J. Cho, Adv. Synth. Catal. 2016, 358, 74–80.
- 57C. Zheng, S.-L. You, Chem. Soc. Rev. 2012, 41, 2498–2518.
- 58S. Fukuzumi, K. Hironaka, T. Tanaka, J. Am. Chem. Soc. 1983, 105, 4722–4727.
- 59For selected recent examples, see:
- 59aM. A. Emmanuel, N. R. Greenberg, D. G. Oblinsky, T. K. Hyster, Nature 2016, 540, 414–417;
- 59bL. Buzzetti, A. Prieto, S. R. Roy, P. Melchiorre, Angew. Chem. Int. Ed. 2017, 56, 15039–15043; Angew. Chem. 2017, 129, 15235–15239.
- 60T. R. Blum, Z. D. Miller, D. M. Bates, I. A. Guzei, T. P. Yoon, Science 2016, 354, 1391–1395.
- 61 Time-Correlated Single Photon Counting (Eds.: ), Academic Press, London, 1984.
- 62A. P. Demchenko, J. Heldt, J. Waluk, P.-T. Chou, P. K. Sengupta, L. Brizhik, J. C. del Valle, Angew. Chem. Int. Ed. 2014, 53, 14316–14324; Angew. Chem. 2014, 126, 14542–14551.
- 63Quenching experiments cannot discriminate between electron-transfer and energy-transfer mechanisms since both are productive collisional deactivation manifolds of the excited-state species, which induce a decrease in emission intensity. Other experimental techniques, such as time-resolved absorption spectroscopy, can be used to discriminate between electron-transfer and energy-transfer manifolds. This is possible, for example, when the oxidized or reduced molecule, generated from a SET event, gives rise to a new distinctive absorption signal in the accessible portion of the spectrum.
- 64
- 64aM. Silvi, E. Arceo, I. D. Jurberg, C. Cassani, P. Melchiorre, J. Am. Chem. Soc. 2015, 137, 6120–6123;
- 64bA. Bahamonde, P. Melchiorre, J. Am. Chem. Soc. 2016, 138, 8019–8030;
- 64cG. Filippini, M. Silvi, P. Melchiorre, Angew. Chem. Int. Ed. 2017, 56, 4447–4451; Angew. Chem. 2017, 129, 4518–4522.
- 65E. R. Welin, C. Le, D. M. Arias-Rotondo, J. K. McCusker, D. W. C. MacMillan, Science 2017, 355, 380–385.
- 66Since the iridium photosensitizer 37 and the NiII species X are both absorbing in the same region, transient absorption spectroscopy could not conclusively differentiate between energy- and electron-transfer processes.
- 67M. N. Hopkinson, A. Gómez-Suárez, M. Teders, B. Sahoo, F. Glorius, Angew. Chem. Int. Ed. 2016, 55, 4361–4366; Angew. Chem. 2016, 128, 4434–4439.
- 68For a recent thorough discussion on radical-trapping chemistry, see: K. U. Ingold, D. A. Pratt, Chem. Rev. 2014, 114, 9022–9046.
- 69E. C. Gentry, L. J. Rono, M. E. Hale, R. Matsuura, R. R. Knowles, J. Am. Chem. Soc. 2018, 140, 3394–3402.
- 70M. Newcombe, Radical Kinetics and Clocks, Vol. 1, chapter 5, pp. 107–124 in Ref. [10a].
- 71J. C. Walton, Analysis of Radicals by EPR. Vol. 1, chapter 7, pp. 147–174 of Ref. [10a].
- 72
- 72aV. Quint, F. Morlet-Savary, J.-F. Lohier, J. Lalevée, A.-C. Gaumont, S. Lakhdar, J. Am. Chem. Soc. 2016, 138, 7436–7441;
- 72bW. Hao, X. Wu, J. Z. Sun, J. C. Siu, S. N. MacMillan, S. Lin, J. Am. Chem. Soc. 2017, 139, 12141–12144.
- 73For a comprehensive review on the topic, see: M. Goez, Annu. Rep. NMR Spectrosc. 2009, 66, 77–147.
- 74
- 74aC. Feldmeier, H. Bartling, E. Riedle, R. M. Gschwind, J. Magn. Reson. 2013, 232, 39–44;
- 74bA. Seegerer, P. Nitschke, R. M. Gschwind, Angew. Chem. Int. Ed. 2018, 57, 7493–7497; Angew. Chem. 2018, 130, 7615–7619.
- 75C. Feldmeier, H. Bartling, K. Magerl, R. M. Gschwind, Angew. Chem. Int. Ed. 2015, 54, 1347–1351; Angew. Chem. 2015, 127, 1363–1367.
- 76A. Stolow, A. E. Bragg, D. M. Neumark, Chem. Rev. 2004, 104, 1719–1758.
- 77
- 77a“Nanosecond Laser Flash Photolysis: A Tool for Physical Organic Chemistry”: J. C. Scaiano in Reactive Intermediate Chemistry, Wiley, Hoboken, 2005, pp. 847–871;
10.1002/0471721492.ch18 Google Scholar
- 77bE. P. Farr, J. C. Quintana, V. Reynoso, J. D. Ruberry, W. R. Shin, K. R. Swartz, J. Chem. Educ. 2018, 95, 864–871.
- 78N. A. Romero, D. A. Nicewicz, J. Am. Chem. Soc. 2014, 136, 17024–17035.
- 79
- 79aD. S. Hamilton, D. A. Nicewicz, J. Am. Chem. Soc. 2012, 134, 18577–18580;
- 79bK. A. Margrey, D. A. Nicewicz, Acc. Chem. Res. 2016, 49, 1997–2006.
- 80S. P. Pitre, C. D. McTiernan, H. Ismaili, J. C. Scaiano, J. Am. Chem. Soc. 2013, 135, 13286–13289.
- 81Y.-Q. Zou, J.-R. Chen, X.-P. Liu, L.-Q. Lu, R. L. Davis, K. A. Jørgensen, W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 784–788; Angew. Chem. 2012, 124, 808–812.
- 82A. Bahamonde, J. J. Murphy, M. Savarese, É. Brémond, A. Cavalli, P. Melchiorre, J. Am. Chem. Soc. 2017, 139, 4559–4567.
- 83J. J. Murphy, D. Bastida, S. Paria, M. Fagnoni, P. Melchiorre, Nature 2016, 532, 218–222.
- 84J. D. Griffin, M. A. Zeller, D. A. Nicewicz, J. Am. Chem. Soc. 2015, 137, 11340–11348.
- 85Z.-Y. Cao, T. Ghosh, P. Melchiorre, Nat. Commun. 2018, 9, 3274.
- 86
- 86aA. Studer, Chem. Eur. J. 2001, 7, 1159–1164;
10.1002/1521-3765(20010316)7:6<1159::AID-CHEM1159>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 86bH. Fischer, Chem. Rev. 2001, 101, 3581–3610;
- 86cK. S. Focsaneanu, J. C. Scaiano, Helv. Chim. Acta 2006, 89, 2473–2482.
- 87M. D. Kärkäs, B. S. Matsuura, C. R. J. Stephenson, Science 2015, 349, 1285–1286.
- 88
- 88aC. G. Hatchard, C. A. Parker, Proc. R. Soc. London Ser. A 1956, 235, 518–536;
- 88bH. J. Kuhn, S. E. Braslavsky, R. Schmidt, Pure Appl. Chem. 1989, 61, 187–210.
- 89M. A. Cismesia, T. P. Yoon, Chem. Sci. 2015, 6, 5426–5434.
- 90S. P. Pitre, C. D. McTiernan, W. Vine, R. DiPucchio, M. Grenier, J. C. Scaiano, Sci. Rep. 2015, 5, 16397.
- 91G. M. Burnett, H. W. Melville, Proc. R. Soc. London Ser. A 1947, 189, 456–480.
Citing Literature
March 18, 2019
Pages 3730-3747