Direct Solar-to-Electrochemical Energy Storage in a Functionalized Covalent Organic Framework
Dr. Jiangquan Lv
CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yan-Xi Tan
CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jiafang Xie
CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
Search for more papers by this authorRui Yang
CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
Search for more papers by this authorDr. Muxin Yu
CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
Search for more papers by this authorShanshan Sun
Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, P. R. China
Search for more papers by this authorProf. Ming-De Li
Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Daqiang Yuan
CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yaobing Wang
CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
Search for more papers by this authorDr. Jiangquan Lv
CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yan-Xi Tan
CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jiafang Xie
CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
Search for more papers by this authorRui Yang
CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
Search for more papers by this authorDr. Muxin Yu
CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
Search for more papers by this authorShanshan Sun
Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, P. R. China
Search for more papers by this authorProf. Ming-De Li
Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Daqiang Yuan
CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yaobing Wang
CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
Search for more papers by this authorGraphical Abstract
A covalent organic framework functionalized with triphenylamine and naphthalenediimide units was used as a cathode. It could synergize photoinduced charge transfer with reversible electrochemical (de)lithiation processes. This leads to decreased charge voltage (by 0.5 V), increased discharge voltage (by 0.5 V), and an extra 38.7 % battery efficiency under illumination.
Abstract
A covalent organic framework integrating naphthalenediimide and triphenylamine units (NT-COF) is presented. Two-dimensional porous nanosheets are packed with a high specific surface area of 1276 m2 g−1. Photo/electrochemical measurements reveal the ultrahigh efficient intramolecular charge transfer from the TPA to the NDI and the highly reversible electrochemical reaction in NT-COF. There is a synergetic effect in NT-COF between the reversible electrochemical reaction and intramolecular charge transfer with enhanced solar energy efficiency and an accelerated electrochemical reaction. This synergetic mechanism provides the key basis for direct solar-to-electrochemical energy conversion/storage. With the NT-COF as the cathode materials, a solar Li-ion battery is realized with decreased charge voltage (by 0.5 V), increased discharge voltage (by 0.5 V), and extra 38.7 % battery efficiency.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201806596-sup-0001-misc_information.pdf2.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. Hodes, J. Manassen, D. Cahen, Nature 1976, 261, 403–404;
- 1bT. Chen, L. B. Qiu, Z. B. Yang, Z. B. Cai, J. Ren, H. P. Li, H. J. Lin, X. M. Sun, H. S. Peng, Angew. Chem. Int. Ed. 2012, 51, 11977–11980; Angew. Chem. 2012, 124, 12143–12146;
- 1cD. Schmidt, M. D. Hager, U. S. Schubert, Adv. Energy Mater. 2016, 6, 1500369;
- 1dQ. Li, Y. Liu, S. H. Guo, H. S. Zhou, Nano Today 2017, 16, 46–60;
- 1eB. Luo, D. L. Ye, L. Z. Wang, Adv. Sci. 2017, 4, 1700104.
- 2
- 2aT. L. Gibson, N. A. Kelly, J. Power Sources 2010, 195, 3928–3932;
- 2bJ. T. Xu, Y. H. Chen, L. M. Dai, Nat. Commun. 2015, 6, 8103;
- 2cA. Gurung, K. Chen, R. Khan, S. S. Abdulkarim, G. Varnekar, R. Pathak, R. Naderi, Q. Q. Qiao, Adv. Energy Mater. 2017, 7, 1602105.
- 3
- 3aB. Kang, G. Ceder, Nature 2009, 458, 190–193;
- 3bJ. Hassoun, K. S. Lee, Y. K. Sun, B. Scrosati, J. Am. Chem. Soc. 2011, 133, 3139–3143;
- 3cW. D. Li, B. H. Song, A. Manthiram, Chem. Soc. Rev. 2017, 46, 3006–3059;
- 3dJ. Lu, Z. H. Chen, Z. F. Ma, F. Pan, L. A. Curtiss, K. Amine, Nat. Nanotechnol. 2016, 11, 1031–1038.
- 4
- 4aA. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166–1170;
- 4bX. Feng, X. S. Ding, D. L. Jiang, Chem. Soc. Rev. 2012, 41, 6010–6022;
- 4cJ. L. Segura, M. J. Mancheno, F. Zamora, Chem. Soc. Rev. 2016, 45, 5635–5671.
- 5
- 5aE. Q. Jin, M. Asada, Q. Xu, S. Dalapati, M. A. Addicoat, M. A. Brady, H. Xu, T. Nakamura, T. Heine, Q. H. Chen, D. L. Jiang, Science 2017, 357, 673–676;
- 5bD. D. Medina, M. L. Petrus, A. N. Jumabekov, J. T. Margraf, S. Weinberger, J. M. Rotter, T. Clark, T. Bein, ACS Nano 2017, 11, 2706–2713.
- 6
- 6aP. Peng, Z. H. Zhou, J. N. Guo, Z. H. Xiang, ACS Energy Lett. 2017, 2, 1308–1314;
- 6bC. Y. Lin, D. T. Zhang, Z. H. Zhao, Z. H. Xia, Adv. Mater. 2018, 30, 1703646.
- 7
- 7aS. Wan, J. Guo, J. Kim, H. Ihee, D. L. Jiang, Angew. Chem. Int. Ed. 2008, 47, 8826–8830; Angew. Chem. 2008, 120, 8958–8962;
- 7bE. L. Spitler, J. W. Colson, F. J. Uribe-Romo, A. R. Woll, M. R. Giovino, A. Saldivar, W. R. Dichtel, Angew. Chem. Int. Ed. 2012, 51, 2623–2627; Angew. Chem. 2012, 124, 2677–2681;
- 7cM. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina, A. Hartschuh, P. Knochel, T. Bein, Angew. Chem. Int. Ed. 2013, 52, 2920–2924; Angew. Chem. 2013, 125, 2992–2996;
- 7dM. Calik, F. Auras, L. M. Salonen, K. Bader, I. Grill, M. Handloser, D. D. Medina, M. Dogru, F. Lobermann, D. Trauner, A. Hartschuh, T. Bein, J. Am. Chem. Soc. 2014, 136, 17802–17807;
- 7eD. Bessinger, L. Ascherl, F. Auras, T. Bein, J. Am. Chem. Soc. 2017, 139, 12035–12042.
- 8
- 8aF. Xu, S. B. Jin, H. Zhong, D. C. Wu, X. Q. Yang, X. Chen, H. Wei, R. W. Fu, D. L. Jiang, Sci. Rep. UK 2015, 5, 8225;
- 8bT. B. Schon, A. J. Tilley, E. L. Kynaston, D. S. Seferos, ACS Appl. Mater. Interfaces 2017, 9, 15631–15637;
- 8cS. Wang, Q. Y. Wang, P. P. Shao, Y. Z. Han, X. Gao, L. Ma, S. Yuan, X. J. Ma, J. W. Zhou, X. Feng, B. Wang, J. Am. Chem. Soc. 2017, 139, 4258–4261;
- 8dD. H. Yang, Z. Q. Yao, D. H. Wu, Y. H. Zhang, Z. Zhou, X. H. Bu, J. Mater. Chem. A 2016, 4, 18621–18627.
- 9
- 9aS. Guha, F. S. Goodson, S. Roy, L. J. Corson, C. A. Gravenmier, S. Saha, J. Am. Chem. Soc. 2011, 133, 15256–15259;
- 9bS. Guha, F. S. Goodson, L. J. Corson, S. Saha, J. Am. Chem. Soc. 2012, 134, 13679–13691.
- 10Y. Shi, H. Tang, S. Jiang, L. V. Kayser, M. Li, F. Liu, F. Ji, D. J. Lipomi, S. P. Ong, Z. Chen, Chem. Mater. 2018, 30, 3508–3517.
- 11M. X. Lv, F. Zhang, Y. W. Wu, M. J. Chen, C. F. Yao, J. M. Nan, D. Shu, R. H. Zeng, H. P. Zeng, S. L. Chou, Sci. Rep. UK 2016, 6, 23515.