Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy
Corresponding Author
Dr. Xingshu Li
Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120–750 Korea
These authors contributed equally to this work.
Search for more papers by this authorNahyun Kwon
Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120–750 Korea
These authors contributed equally to this work.
Search for more papers by this authorTian Guo
Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120–750 Korea
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Zhuang Liu
Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Juyoung Yoon
Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120–750 Korea
Search for more papers by this authorCorresponding Author
Dr. Xingshu Li
Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120–750 Korea
These authors contributed equally to this work.
Search for more papers by this authorNahyun Kwon
Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120–750 Korea
These authors contributed equally to this work.
Search for more papers by this authorTian Guo
Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120–750 Korea
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Zhuang Liu
Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Juyoung Yoon
Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120–750 Korea
Search for more papers by this authorGraphical Abstract
PDT beats hypoxia: Novel and robust strategies, which can improve the therapeutic efficacy of photodynamic therapy (PDT) for hypoxic tumors, have been widely investigated in recent years. These efforts have led to the development of new approaches that have changed the paradigm of PDT and provided solutions to some key problems.
Abstract
Despite its clinical promise, photodynamic therapy (PDT) suffers from a key drawback associated with its oxygen-dependent nature, which limits its effective use against hypoxic tumors. Moreover, both PDT-mediated oxygen consumption and microvascular damage further increase tumor hypoxia and, thus, impede therapeutic outcomes. In recent years, numerous investigations have focused on strategies for overcoming this drawback of PDT. These efforts, which are summarized in this review, have produced many innovative methods to avoid the limits of PDT associated with hypoxia.
Conflict of interest
The authors declare no conflict of interest.
References
- 1D. E. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer 2003, 3, 380–387.
- 2A. P. Castano, P. Mroz, M. R. Hamblin, Nat. Rev. Cancer 2006, 6, 535–545.
- 3J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, Chem. Rev. 2010, 110, 2795–2838.
- 4X. Li, S. Lee, J. Yoon, Chem. Soc. Rev. 2018, 47, 1174–1188.
- 5T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, J. Natl. Cancer Inst. 1998, 90, 889–905.
- 6S. Pervaiz, M. Olivo, Clin. Exp. Pharmacol. Physiol. 2006, 33, 551–556.
- 7Á. Juarranz, P. Jaén, F. S. Rodríguez, J. Cuevas, S. González, Clin. Transl. Oncol. 2008, 10, 148–154.
- 8X. Li, B. D. Zheng, X. H. Peng, S. Z. Li, J. W. Ying, Y. Zhao, J. D. Huang, J. Yoon, Coord. Chem. Rev. 2018, https://doi.org/10.1016/j.ccr.2017.08.003.
- 9J. E. Moulder, S. Rockwell, Cancer Metastasis Rev. 1987, 5, 313–341.
- 10J. M. Brown, W. R. Wilson, Nat. Rev. Cancer 2004, 4, 437–447.
- 11W. Fan, P. Huang, X. Chen, Chem. Soc. Rev. 2016, 45, 6488–6519.
- 12Z. Zhou, J. Song, L. Nie, X. Chen, Chem. Soc. Rev. 2016, 45, 6597–6626.
- 13L. Duan, X. Yan, A. Wang, Y. Jia, J. Li, ACS Nano 2012, 6, 6897–6904.
- 14T. Li, X. Jing, Y. Huang, Macromol. Biosci. 2011, 11, 865–875.
- 15C. L. Modery-Pawlowski, L. L. Tian, V. Pan, A. Sen Gupta, Biomacromolecules 2013, 14, 939–948.
- 16Z. Luo, M. Zheng, P. Zhao, Z. Chen, F. Siu, P. Gong, G. Gao, Z. Sheng, C. Zheng, Y. Ma, L. Cai, Sci. Rep. 2016, 6, 23393.
- 17S. Wang, F. Yuan, K. Chen, G. Chen, K. Tu, H. Wang, L. Q. Wang, Biomacromolecules 2015, 16, 2693–2700.
- 18W. Tang, Z. Zhen, M. Wang, H. Wang, Y.-J. Chuang, W. Zhang, G. D. Wang, T. Todd, T. Cowger, H. Chen, L. Liu, Z. Li, J. Xie, Adv. Funct. Mater. 2016, 26, 1757–1768.
- 19P. Wang, X. Li, C. Yao, W. Wang, M. Zhao, A. M. El-Toni, F. Zhang, Biomaterials 2017, 125, 90–100.
- 20D. R. Spahn, Crit. Care 1999, 3, R 93–R97.
- 21Y. Cheng, H. Cheng, C. Jiang, X. Qiu, K. Wang, W. Huan, A. Yuan, J. Wu, Y. Hu, Nat. Commun. 2015, 6, 8785.
- 22X. Song, L. Feng, C. Liang, K. Yang, Z. Liu, Nano Lett. 2016, 16, 6145–6153.
- 23R. A. Day, D. A. Estabrook, J. K. Logan, E. M. Sletten, Chem. Commun. 2017, 53, 13043–13046.
- 24J. Wang, L. Liu, Q. You, Y. Song, Q. Sun, Y. Wang, Y. Cheng, F. Tan, N. Li, Theranostics 2018, 8, 955–971.
- 25C. W. Song, J. G. Rhee, S. H. Levitt, Int. J. Radiat. Oncol. Biol. Phys. 1982, 8, 851–856.
- 26Q. Chen, H. Chen, H. Shapiro, F. W. Hetzel, Radiat. Res. 1996, 146, 293–297.
- 27D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, R. K. Dodge, H. C. Charles, T. V. Samulski, L. R. Prosnitz, M. W. Dewhirst, Cancer Res. 1996, 56, 5347–5350.
- 28C. S. Jin, J. F. Lovell, J. Chen, G. Zheng, ACS Nano 2013, 7, 2541–2550.
- 29D. Jaque, L. Martinez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martin Rodriguez, J. Garcia Sole, Nanoscale 2014, 6, 9494–9530.
- 30Q. Chen, L. Xu, C. Liang, C. Wang, R. Peng, Z. Liu, Nat. Commun. 2016, 7, 13193.
- 31X. Li, X. H. Peng, B. D. Zheng, J. Tang, Y. Zhao, B. Y. Zheng, M. R. Ke, J. D. Huang, Chem. Sci. 2018, 9, 2098–2104.
- 32L. Feng, D. Tao, Z. Dong, Q. Chen, Y. Chao, Z. Liu, M. Chen, Biomaterials 2017, 127, 13–24.
- 33X. Li, S. Kolemen, J. Yoon, E. U. Akkaya, Adv. Funct. Mater. 2017, 27, 1604053.
- 34X. Li, B. Y. Zheng, M. R. Ke, Y. Zhang, J. D. Huang, J. Yoon, Theranostics 2017, 7, 2746–2756.
- 35X. Li, J. Kim, J. Yoon, X. Chen, Adv. Mater. 2017, 29, 1606857.
- 36R. C. H. Wong, P. C. Lo, D. K. P. Ng, Coord. Chem. Rev. 2018, https://doi.org/10.1016/j.ccr.2017.10.006.
- 37X. S. Li, M. R. Ke, W. Huang, C. H. Ye, J. D. Huang, Chem. Eur. J. 2015, 21, 3310.
- 38J. F. Lovell, T. W. B. Liu, J. Chen, G. Zheng, Chem. Rev. 2010, 110, 2839–2857.
- 39R. K. Jain, Science 2005, 307, 58–62.
- 40K. K. Cham, J. H. Baker, K. S. Takhar, J. A. Flexman, M. Q. Wong, D. A. Owen, A. Yung, P. Kozlowski, S. A. Rensberg, E. M. Chu, C. W. Chang, A. K. Buczkowski, S. W. Chung, C. H. Scudamore, A. I. Minchinton, D. T. Yapp, S. S. Na, Br. J. Cancer 2010, 103, 52–60.
- 41F. Mpekris, J. W. Baish, T. Stylianopoulos, R. K. Jain, Proc. Natl. Acad. Sci. USA 2017, 114, 1994–1999.
- 42Q. Chen, J. Chen, C. Liang, L. Feng, Z. Dong, X. Song, G. Song, Z. Liu, J. Controlled Release 2017, 263, 79–89.
- 43H. Wang, W. Zhu, L. Feng, Q. Chen, Y. Chao, Z. Dong, Z. Liu, Nano Res. 2018, 11, 3244–3257.
- 44M. López-Lázaro, Cancer Lett. 2007, 252, 1–8.
- 45A. R. Lippert, G. C. V. de Bittner, C. J. Chang, Acc. Chem. Res. 2011, 44, 793–804.
- 46H. Chen, J. Tian, W. He, Z. Guo, J. Am. Chem. Soc. 2015, 137, 1539–1547.
- 47H. Cheng, J. Y. Zhu, S. Y. Li, J. Y. Zeng, Q. Lei, K. W. Chen, C. Zhang, X. Z. Zhang, Adv. Funct. Mater. 2016, 26, 7847–7860.
- 48S. Y. Li, H. Cheng, B. R. Xie, W. X. Qiu, J. Y. Zeng, C. X. Li, S. S. Wan, L. Zhang, W. L. Liu, X. Z. Zhang, ACS Nano 2017, 11, 7006–7018.
- 49Q. Chen, L. Feng, J. Liu, W. Zhu, Z. Dong, Y. Wu, Z. Liu, Adv. Mater. 2016, 28, 7129–7136.
- 50Z. Ma, X. Jia, J. Bai, Y. Ruan, C. Wang, J. Li, M. Zhang, X. Jiang, Adv. Funct. Mater. 2017, 27, 1604258.
- 51Q. Jia, J. Ge, W. Liu, X. Zheng, S. Chen, Y. Wen, H. Zhang, P. Wang, Adv. Mater. 2018, 30, 1706090.
- 52T. Lin, X. Zhao, S. Zhao, H. Yu, W. Cao, W. Chen, H. Wei, H. Guo, Theranostics 2018, 8, 990–1004.
- 53C. P. Liu, T. H. Wu, C. Y. Liu, K. C. Chen, Y. X. Chen, G. S. Chen, S. Y. Lin, Small 2017, 13, 1700278.
- 54Y. Zhang, F. Wang, C. Liu, Z. wang, L. Kang, Y. Huang, K. Dong, J. Ren, X. Qu, ACS Nano 2018, 12, 651–661.
- 55C. Yao, W. Wang, P. Wang, M. Zhao, X. Li, F. Zhang, Adv. Mater. 2018, 30, 1704833.
- 56D. W. Zheng, B. Li, C. X. Li, J. X. Fan, Q. Lei, C. Li, Z. Xu, X. Z. Zhang, ACS Nano 2016, 10, 8715–8722.
- 57R. Jahanban-Esfahlan, M. de la Guardia, D. Ahmadi, B. Yousefi, J. Cell. Physiol. 2018, 233, 2019–2031.
- 58M. Broekgaarden, R. Weijer, M. Krekorian, B. van den Ijssel, M. Kos, L. K. Alles, A. C. van Wijk, Z. Bikadi, E. Hazai, T. M. van Gulik, M. Heger, Nano Res. 2016, 9, 1639–1662.
- 59H. Gong, Y. Chao, J. Xiang, X. Han, G. Song, L. Feng, J. Liu, G. Yang, Q. Chen, Z. Liu, Nano Lett. 2016, 16, 2512–2521.
- 60J. R. Fraser, T. C. Laurent, U. B. Laurent, J. Intern. Med. 1997, 242, 27–33.
- 61B. P. Toole, V. C. Hascall, Am. J. Pathol. 2002, 161, 745–747.
- 62L. Zhang, C. B. Underhill, L. Chen, Cancer Res. 1995, 55, 428–433.
- 63K. Ropponen, M. Tammi, J. Parkkinen, M. Eskelinen, R. Tammi, P. Lipponen, U. Ågren, E. Alhava, V. M. Kosma, Cancer Res. 1998, 58, 342–347.
- 64T. Spruß, G. Bernhardt, H. Schönenberger, W. Schiess, J. Cancer Res. Clin. Oncol. 1995, 121, 193–202.
- 65I. Muckenschnabel, G. Bernhardt, T. Spruss, A. Buschauer, Cancer Lett. 1998, 131, 71–84.
- 66W. Lv, Z. Zhang, K. Y. Zhang, H. Yang, S. Liu, A. Xu, S. Guo, Q. Zhao, W. Huang, Angew. Chem. Int. Ed. 2016, 55, 9947–9951; Angew. Chem. 2016, 128, 10101–10105.
- 67Z. Xiao, S. Halls, D. Dickey, J. Tulip, R. B. Moore, Clin. Cancer Res. 2007, 13, 7496–7505.
- 68L. Yang, Q. Chen, Y. Wei, D. Xing, Lasers Surg. Med. 2010, 42, 671–679.
- 69S. K. Bisland, L. Lilge, A. Lin, R. Rusnow, B. C. Wilson, Photochem. Photobiol. 2004, 80, 22–30.
- 70A. L. de Souza, K. Marra, K. S. Samkoe, S. C. Kanick, S. C. Davis, M. S. Chapman, E. V. Maytin, T. Hassan, B. W. Pogue, Br. J. Cancer 2016, 115, 805–813.
- 71I. S. Turan, D. Yildiz, A. Turksoy, G. Gunaydin, E. U. Akkaya, Angew. Chem. Int. Ed. 2016, 55, 2875–2878; Angew. Chem. 2016, 128, 2925–2928.
- 72Z. Lv, H. Wei, Q. Li, X. Su, S. Liu, K. Y. Zhang, W. Lv, Q. Zhao, X. Li, W. Huang, Chem. Sci. 2018, 9, 502–512.
- 73R. C. Gilson, K. C. L. Black, D. Lane, S. Achilefu, Angew. Chem. Int. Ed. 2017, 56, 10717–10720; Angew. Chem. 2017, 129, 10857–10860.
- 74C. Zhang, K. Zhao, W. Bu, D. Ni, Y. Liu, J. Feng, J. Shi, Angew. Chem. Int. Ed. 2015, 54, 1770–1774; Angew. Chem. 2015, 127, 1790–1794.
- 75H. Ding, H. Yu, Y. Dong, R. Tian, G. Huang, D. A. Boothman, B. D. Sumer, J. Gao, J. Controlled Release 2011, 156, 276–280.
- 76S. Kolemen, T. Ozdemir, D. Lee, G. M. Kim, T. Karatas, J. Yoon, E. U. Akkaya, Angew. Chem. Int. Ed. 2016, 55, 3606–3610; Angew. Chem. 2016, 128, 3670–3674.
- 77Y. Liu, Y. Liu, W. Bu, C. Cheng, C. Zuo, Q. Xiao, Y. Sun, D. Ni, C. Zhang, J. Liu, J. Shi, Angew. Chem. Int. Ed. 2015, 54, 8105–8109; Angew. Chem. 2015, 127, 8223–8227.
- 78L. Feng, L. Cheng, Z. Dong, D. Tao, T. E. Barnhart, W. Cai, M. Chen, Z. Liu, ACS Nano 2017, 11, 927–937.
- 79Y. Wang, Y. Xie, J. Li, Z.-H. Peng, Y. Sheinin, J. Zhou, D. Oupicky, ACS Nano 2017, 11, 2227–2238.
- 80H. S. Jung, J. Han, H. Shi, S. Koo, H. Singh, H. J. Kim, J. L. Sessler, J. Y. Lee, J. H. Kim, J. S. Kim, J. Am. Chem. Soc. 2017, 139, 7595–7602.
- 81Y. Yong, L. Zhou, Z. Gu, L. Yan, G. Tian, X. Zheng, X. Liu, X. Zhang, J. Shi, W. Cong, W. Yin, Y. Zhao, Nanoscale 2014, 6, 10394–10403.
- 82P. Vijayaraghavan, C. H. Liu, R. Vankayala, C. S. Chiang, K. C. Hwang, Adv. Mater. 2014, 26, 6689–6695.
- 83Q. Chen, C. Wang, L. Cheng, W. He, Z. Cheng, Z. Liu, Biomaterials 2014, 35, 2915–2913.
- 84D. Zhang, M. Wu, Y. Zeng, L. Wu, Q. Wang, X. Han, X. Liu, J. Liu, ACS Appl. Mater. Interfaces 2015, 7, 8176–8187.
- 85X. Yan, H. Hu, J. Lin, A. J. Jin, G. Niu, S. Zhang, P. Huang, B. Shen, X. Chen, Nanoscale 2015, 7, 2520–2526.
- 86T. Y. Lin, W. Guo, Q. Long, A. Ma, Q. Liu, H. Zhang, Y. Huang, S. Chandrasekaran, C. Pan, K. S. Lam, Y. Li, Theranostics 2016, 6, 1324–1335.
- 87Z. Gu, S. Zhu, L. Yan, F. Zhao, Y. Zhao, Adv. Mater. 2018, https://doi.org/10.1002/adma.201800662.
- 88W. Li, X. Guo, F. Kong, H. Zhang, L. Luo, Q. Li, C. Zhu, J. Yang, Y. Du, J. You, J. Controlled Release 2017, 258, 171–181.
- 89E. L. L. Yeo, J. U-Jin Cheah, B. Y. Lim, P. S. P. Thong, K. C. Soo, J. C. Y. Kah, ACS Biomater. Sci. Eng. 2017, 3, 1039–1050.
- 90D. Yang, G. Yang, P. Yang, R. Lv, S. Gai, C. Li, F. He, J. Lin, Adv. Funct. Mater. 2017, 27, 1700371.
- 91X. Li, C. y. Kim, S. Lee, D. Lee, H. M. Chung, G. Kim, S. H. Heo, C. Kim, K. S. Hong, J. Yoon, J. Am. Chem. Soc. 2017, 139, 10880.
- 92X. Li, S. Yu, D. Lee, G. Kim, B. Lee, Y. Cho, B. Y. Zheng, M. R. Ke, J. D. Huang, K. T. Nam, X. Chen, J. Yoon, ACS Nano 2018, 12, 681–688.
- 93M. Mitsunaga, M. Ogawa, N. Kosaka, L. T. Rosenblum, P. L. Choyke, H. Kobayashi, Nat. Med. 2011, 17, 1685–1691.
- 94D. Wang, T. Wang, J. Liu, H. Yu, S. Jiao, B. Feng, F. Zhou, Y. Fu, Q. Yin, P. Zhang, Z. Zhou, Y. Li, Nano Lett. 2016, 16, 5503–5513.
- 95G. Yang, L. Xu, Y. Chao, J. Xu, X. Sun, Y. Wu, R. Peng, Z. Liu, Nat. Commun. 2017, 8, 902.
- 96G. Yang, L. Xu, J. Xu, R. Zhang, G. Song, Y. Chao, L. Feng, F. Han, Z. Dong, B. Li, Z. Liu, Nano Lett. 2018, 18, 2475–2484.
- 97W. Song, J. Kuang, C. X. Li, M. Zhang, D. Zheng, X. Zeng, C. Liu, X. Z. Zhang, ACS Nano 2018, 12, 1978–1989.
- 98G. Lan, K. Ni, Z. Xu, S. S. Veroneau, Y. Song, W. Lin, J. Am. Chem. Soc. 2018, 140, 5670–5673.
- 99J. Y. Zeng, M. Z. Zou, M. Zhang, X. S. Wang, X. Zeng, H. Cong, X. Z. Zhang, ACS Nano 2018, 12, 4630–4640.
Citing Literature
September 3, 2018
Pages 11522-11531