Oxygen-Containing Amorphous Cobalt Sulfide Porous Nanocubes as High-Activity Electrocatalysts for the Oxygen Evolution Reaction in an Alkaline/Neutral Medium
Pingwei Cai
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Junheng Huang
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Junxiang Chen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Zhenhai Wen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
Search for more papers by this authorPingwei Cai
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Junheng Huang
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Junxiang Chen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Zhenhai Wen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
Search for more papers by this authorGraphical Abstract
Oxygen-containing amorphous cobalt sulfide porous nanocubes with Co−S dangling bands, a distorted CoS4.6O0.6 octahedral structure, and incorporated oxygen in the CoSx have been prepared. The material shows outstanding electrocatalytic activity for water oxidation in alkaline and neutral electrolytes. vac=vacancy; Co blue, S yellow, O red, H white.
Abstract
A novel OER electrocatalyst, namely oxygen-incorporated amorphous cobalt sulfide porous nanocubes (A-CoS4.6O0.6 PNCs), show advantages over the benchmark RuO2 catalyst in alkaline/neutral medium. Experiments combining with calculation demonstrate that the desirable O* adsorption energy, associated with the distorted CoS4.6O0.6 octahedron structure and the oxygen doping, contribute synergistically to the outstanding electrocatalytic activity.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201701280-sup-0001-misc_information.pdf1.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. Liu, M. Park, M. G. Kim, S. Gupta, G. Wu, J. Cho, Angew. Chem. Int. Ed. 2015, 54, 9654–9658; Angew. Chem. 2015, 127, 9790–9794;
- 1bR. Bashyam, P. Zelenay, Nature 2006, 443, 63–66;
- 1cI. Castro-Rodriguez, K. Meyer, J. Am. Chem. Soc. 2005, 127, 11242–11243;
- 1dY. Meng, W. Song, H. Huang, Z. Ren, S. Y. Chen, S. L. Suib, J. Am. Chem. Soc. 2014, 136, 11452–11464.
- 2
- 2aJ. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383–1385;
- 2bM. Okamura, M. Kondo, R. Kuga, Y. Kurashige, T. Yanai, S. Hayami, V. K. Praneeth, M. Yoshida, K. Yoneda, S. Kawata, S. Masaoka, Nature 2016, 530, 465–468;
- 2cJ. Zhang, Z. Zhao, Z. Xia, L. Dai, Nat. Nanotechnol. 2015, 10, 444–452.
- 3
- 3aS. Ardizzone, G. Fregonara, S. Trasatti, Electrochim. Acta 1990, 35, 263–267;
- 3bV. Petrykin, K. Macounova, O. Shlyakhtin, P. Krtil, Angew. Chem. Int. Ed. 2010, 49, 4813–4815; Angew. Chem. 2010, 122, 4923–4925;
- 3cL. C. Seitz, C. F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H. Y. Hwang, J. K. Norskov, Science 2016, 353, 1011–1014.
- 4
- 4aF. Dionigi, P. Strasser, Adv. Energy Mater. 2016, 6, 1600621;
- 4bC. Tang, H. S. Wang, H. F. Wang, Q. Zhang, G. L. Tian, J. Q. Nie, F. Wei, Adv. Mater. 2015, 27, 4516–4522;
- 4cW. Cheng, J. He, T. Yao, Z. Sun, Y. Jiang, Q. Liu, S. Jiang, F. Hu, Z. Xie, B. He, J. Am. Chem. Soc. 2014, 136, 10393–10398;
- 4dA. K. Geim, Science 2009, 324, 1530–1534;
- 4eJ. Huang, J. Chen, T. Yao, J. He, S. Jiang, Z. Sun, Q. Liu, W. Cheng, F. Hu, Y. Jiang, Z. Pan, S. Wei, Angew. Chem. Int. Ed. 2015, 54, 8722–8727; Angew. Chem. 2015, 127, 8846–8851;
- 4fJ. Xie, R. Wang, J. Bao, X. Zhang, H. Zhang, S. Li, Y. Xie, Inorg. Chem. Front. 2014, 1, 751–756;
- 4gP. Chen, K. Xu, T. Zhou, Y. Tong, J. Wu, H. Cheng, X. Lu, H. Ding, C. Wu, Y. Xie, Angew. Chem. Int. Ed. 2016, 55, 2488–2492; Angew. Chem. 2016, 128, 2534–2538.
- 5
- 5aW. D. Chemelewski, H.-C. Lee, J.-F. Lin, A. J. Bard, C. B. Mullins, J. Am. Chem. Soc. 2014, 136, 2843–2850;
- 5bM. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith, S. W. Boettcher, J. Am. Chem. Soc. 2015, 137, 3638–3648;
- 5cD. Friebel, M. W. Louie, M. Bajdich, K. E. Sanwald, Y. Cai, A. M. Wise, M.-J. Cheng, D. Sokaras, T.-C. Weng, R. Alonso-Mori, J. Am. Chem. Soc. 2015, 137, 1305–1313.
- 6
- 6aF. Song, X. Hu, Nat. Commun. 2014, 5, 4477;
- 6bF. Song, X. Hu, J. Am. Chem. Soc. 2014, 136, 16481–16484;
- 6cH. Liang, F. Meng, M. Cabán-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang, S. Jin, Nano Lett. 2015, 15, 1421–1427.
- 7C. C. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2015, 137, 4347–4357.
- 8
- 8aM. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 2013, 135, 10274–10277;
- 8bM. S. Faber, R. Dziedzic, M. A. Lukowski, N. S. Kaiser, Q. Ding, S. Jin, J. Am. Chem. Soc. 2014, 136, 10053–10061.
- 9
- 9aY. Guo, Y. Tong, P. Chen, K. Xu, J. Zhao, Y. Lin, W. Chu, Z. Peng, C. Wu, Y. Xie, Adv. Mater. 2015, 27, 5989–5994;
- 9bY. Liu, C. Xiao, M. Lyu, Y. Lin, W. Cai, P. Huang, W. Tong, Y. Zou, Y. Xie, Angew. Chem. Int. Ed. 2015, 54, 11231–11235; Angew. Chem. 2015, 127, 11383–11387.
- 10Z. Lu, H. Wang, D. Kong, K. Yan, P. C. Hsu, G. Zheng, H. Yao, Z. Liang, X. Sun, Y. Cui, Nat. Commun. 2014, 5, 4345.
- 11
- 11aA. Indra, P. W. Menezes, N. R. Sahraie, A. Bergmann, C. Das, M. Tallarida, D. Schmeisser, P. Strasser, M. Driess, J. Am. Chem. Soc. 2014, 136, 17530–17536;
- 11bT. Liu, Q. Liu, A. M. Asiri, Y. Luo, X. Sun, Chem. Commun. 2015, 51, 16683–16686;
- 11cY. Zhang, W. Sun, X. Rui, B. Li, H. T. Tan, G. Guo, S. Madhavi, Y. Zong, Q. Yan, Small 2015, 11, 3694–3702;
- 11dY. Yang, H. Fei, G. Ruan, C. Xiang, J. M. Tour, ACS Nano 2014, 8, 9518–9523;
- 11eR. D. L. Smith, M. S. Prévot, R. D. Fagan, Z. Zhang, P. A. Sedach, M. K. J. Siu, S. Trudel, C. P. Berlinguette, Science 2013, 340, 60–63.
- 12
- 12aS. Chen, J. Duan, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2013, 52, 13567–13570; Angew. Chem. 2013, 125, 13812–13815;
- 12bY. Hou, Z. Wen, S. Cui, X. Feng, J. Chen, Nano Lett. 2016, 16, 2268–2277;
- 12cJ. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, J. Am. Chem. Soc. 2013, 135, 17881–17888.
- 13
- 13aG. Huang, L. Zhang, F. Zhang, L. Wang, Nanoscale 2014, 6, 5509–5515;
- 13bX. Y. Yu, L. Yu, H. B. Wu, X. W. Lou, Angew. Chem. Int. Ed. 2015, 54, 5331–5335; Angew. Chem. 2015, 127, 5421–5425.
- 14
- 14aC. C. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2013, 135, 16977–16987;
- 14bK. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760–764;
- 14cJ. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X. W. D. Lou, Adv. Mater. 2012, 24, 5166–5180;
- 14dD. U. Lee, J. Y. Choi, K. Feng, H. W. Park, Z. Chen, Adv. Energy Mater. 2014, 4, 1301389;
- 14eT. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 13925–13931.
- 15
- 15aP. Cai, S. Ci, E. Zhang, P. Shao, C. Cao, Z. Wen, Electrochim. Acta 2016, 220, 354–362;
- 15bP. Cai, Y. Hong, S. Ci, Z. Wen, Nanoscale 2016, 8, 20048–20055.
- 16
- 16aS.-H. Chang, M.-D. Lu, Y.-L. Tung, H.-Y. Tuan, ACS Nano 2013, 7, 9443–9451;
- 16bP. Sennu, M. Christy, V. Aravindan, Y.-G. Lee, K. S. Nahm, Y.-S. Lee, Chem. Mater. 2015, 27, 5726–5735.
- 17
- 17aN. Kornienko, J. Resasco, N. Becknell, C. M. Jiang, Y. S. Liu, K. Nie, X. Sun, J. Guo, S. R. Leone, P. Yang, J. Am. Chem. Soc. 2015, 137, 7448–7455;
- 17bY. Sun, C. Liu, D. C. Grauer, J. Yano, J. R. Long, P. Yang, C. J. Chang, J. Am. Chem. Soc. 2013, 135, 17699–17702;
- 17cB. Chen, R. Li, G. Ma, X. Gou, Y. Zhu, Y. Xia, Nanoscale 2015, 7, 20674–20684.
- 18B. J. Tan, K. J. Klabunde, P. M. Sherwood, J. Am. Chem. Soc. 1991, 113, 855–861.
- 19H. Li, Y. Gao, Y. Shao, Y. Su, X. Wang, Nano Lett. 2015, 15, 6689–6695.
- 20C. Ouyang, X. Wang, S. Wang, Chem. Commun. 2015, 51, 14160–14163.
- 21Z. Sun, W. Yan, T. Yao, Q. Liu, Y. Xie, S. Wei, Dalton Trans. 2013, 42, 13779–13801.
- 22S. Wei, H. Oyanagi, Z. Li, X. Zhang, W. Liu, S. Yin, X. Wang, Phys. Rev. B 2001, 63, 224201.
- 23B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537–541.