Highly Selective Synthesis of cis-Enediynes on a Ag(111) Surface
Tao Wang
National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, 230029 China
Search for more papers by this authorHaifeng Lv
CAS Key Laboratory of Materials Science and Engineering, School of Chemistry and Materials Science, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Qitang Fan
National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, 230029 China
Search for more papers by this authorLin Feng
National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, 230029 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaojun Wu
CAS Key Laboratory of Materials Science and Engineering, School of Chemistry and Materials Science, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026 China
Hefei National Laboratory of Physical Sciences at the Microscale and Synergetic Innovation of Quantum Information & Quantum Technology, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Junfa Zhu
National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, 230029 China
Search for more papers by this authorTao Wang
National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, 230029 China
Search for more papers by this authorHaifeng Lv
CAS Key Laboratory of Materials Science and Engineering, School of Chemistry and Materials Science, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Qitang Fan
National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, 230029 China
Search for more papers by this authorLin Feng
National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, 230029 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaojun Wu
CAS Key Laboratory of Materials Science and Engineering, School of Chemistry and Materials Science, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026 China
Hefei National Laboratory of Physical Sciences at the Microscale and Synergetic Innovation of Quantum Information & Quantum Technology, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Junfa Zhu
National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, 230029 China
Search for more papers by this authorGraphical Abstract
Selective on-surface synthesis of cis-enediyne-type compounds is reported for the first time. Bromide-substituted terminal alkynes transform into cis-enediynes on a Ag(111) surface at 420 K. Coadsorbed bromide ions help the formed cis-enediynes aggregate into close-packed islands through Br⋅⋅⋅H bonds, which impose a high steric barrier to further reaction of cis-enediyne.
Abstract
Cis-enediyne-type compounds have received much attention as potent antitumor antibiotics. The conventional synthesis of cis-enediynes in solution typically involves multiple steps and various side reactions. For the first time, selective one-step synthesis of cis-enediyne from a single reactant is reported on a Ag(111) surface with a yield up to 90 %. High selectivity for the formation of cis-enediyne originates from the steric effect posed by weak intermolecular interactions, which protect the cis-enediyne from further reaction. A series of comparative experiments and DFT-based transition-state calculations support the findings. The described synthetic approach for directing reaction pathways on-surface may illuminate potential syntheses of other unstable organic compounds.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201701142-sup-0001-misc_information.pdf1.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Golik, J. Clardy, G. Dubay, G. Groenewold, H. Kawaguchi, M. Konishi, B. Krishnan, H. Ohkuma, K. Saitoh, T. W. Doyle, J. Am. Chem. Soc. 1987, 109, 3461–3462.
- 2
- 2aT. Konno, M. Kishi, T. Ishihara, S. Yamada, J. Fluorine Chem. 2013, 156, 144–151;
- 2bT. Konno, M. Kishi, T. Ishihara, S. Yamada, Tetrahedron 2014, 70, 2455–2463;
- 2cK. D. Reichl, A. T. Radosevich, Chem. Commun. 2014, 50, 9302–9305;
- 2dM. Shibuya, Y. Sakai, Y. Naoe, Tetrahedron Lett. 1995, 36, 897–898;
- 2eY. F. Lu, C. W. Harwig, A. G. Fallis, J. Org. Chem. 1993, 58, 4202–4204;
- 2fA. Basak, S. Mandal, S. S. Bag, Chem. Rev. 2003, 103, 4077–4094;
- 2gG. B. Jones, J. M. Wright, G. W. Plourde, G. Hynd, R. S. Huber, J. E. Mathews, J. Am. Chem. Soc. 2000, 122, 1937–1944;
- 2hG. X. Wang, S. Iguchi, M. Hirama, J. Org. Chem. 2001, 66, 2146–2148;
- 2iH. Hopf, M. Theurig, Angew. Chem. Int. Ed. Engl. 1994, 33, 1099–1100; Angew. Chem. 1994, 106, 1173–1174;
- 2jJ. W. Grissom, G. U. Gunawardena, D. Klingberg, D. Huang, Tetrahedron 1996, 52, 6453–6518.
- 3F. Klappenberger, Y. Q. Zhang, J. Bjork, S. Klyatskaya, M. Ruben, J. V. Barth, Acc. Chem. Res. 2015, 48, 2140–2150.
- 4
- 4aQ. Fan, C. Wang, Y. Han, J. Zhu, W. Hieringer, J. Kuttner, G. Hilt, J. M. Gottfried, Angew. Chem. Int. Ed. 2013, 52, 4668–4672; Angew. Chem. 2013, 125, 4766–4770;
- 4bB. Cirera, Y. Q. Zhang, J. Bjork, S. Klyatskaya, Z. Chen, M. Ruben, J. V. Barth, F. Klappenberger, Nano Lett. 2014, 14, 1891–1897;
- 4cH. Y. Gao, H. Wagner, D. Zhong, J. H. Franke, A. Studer, H. Fuchs, Angew. Chem. Int. Ed. 2013, 52, 4024–4028; Angew. Chem. 2013, 125, 4116–4120;
- 4dQ. Sun, L. Cai, Y. Ding, L. Xie, C. Zhang, Q. Tan, W. Xu, Angew. Chem. Int. Ed. 2015, 54, 4549–4552; Angew. Chem. 2015, 127, 4632–4635;
- 4eJ. Liu, P. Ruffieux, X. Feng, K. Mullen, R. Fasel, Chem. Commun. 2014, 50, 11200–11203;
- 4fQ. Fan, J. Dai, T. Wang, J. Kuttner, G. Hilt, J. M. Gottfried, J. Zhu, ACS Nano 2016, 10, 3747–3754;
- 4gH. Zhou, J. Liu, S. Du, L. Zhang, G. Li, Y. Zhang, B. Z. Tang, H. J. Gao, J. Am. Chem. Soc. 2014, 136, 5567–5570.
- 5
- 5aQ. Fan, C. Wang, Y. Han, J. Zhu, J. Kuttner, G. Hilt, J. M. Gottfried, ACS Nano 2014, 8, 709–718;
- 5bJ. Dai, Q. Fan, T. Wang, J. Kuttner, G. Hilt, J. M. Gottfried, J. Zhu, Phys. Chem. Chem. Phys. 2016, 18, 20627–20634.
- 6Q. Fan, C. Wang, L. Liu, Y. Han, J. Zhao, J. Zhu, J. Kuttner, G. Hilt, J. M. Gottfried, J. Phys. Chem. C 2014, 118, 13018–13025.
- 7Q. Sun, L. Cai, H. Ma, C. Yuan, W. Xu, ACS Nano 2016, 10, 7023–7030.
- 8
- 8aH. Y. Gao, J. H. Franke, H. Wagner, D. Zhong, P. A. Held, A. Studer, H. Fuchs, J. Phys. Chem. C 2013, 117, 18595–18602;
- 8bJ. Eichhorn, W. M. Heckl, M. Lackinger, Chem. Commun. 2013, 49, 2900–2902.
- 9
- 9aL. Talirz, H. Sode, J. Cai, P. Ruffieux, S. Blankenburg, R. Jafaar, R. Berger, X. Feng, K. Mullen, D. Passerone, R. Fasel, C. A. Pignedoli, J. Am. Chem. Soc. 2013, 135, 2060–2063;
- 9bQ. Sun, C. Zhang, Z. Li, H. Kong, Q. Tan, A. Hu, W. Xu, J. Am. Chem. Soc. 2013, 135, 8448–8451.
- 10
- 10aA. B. Mohammad, K. H. Lim, I. V. Yudanov, K. M. Neyman, N. Rosch, Phys. Chem. Chem. Phys. 2007, 9, 1247–1254;
- 10bX. Hu, B. Jiang, D. Xie, H. Guo, J. Chem. Phys. 2015, 143, 283–295.
- 11J. Björk, Y. Q. Zhang, F. Klappenberger, J. V. Barth, S. Stafström, J. Phys. Chem. C 2014, 118, 3181–3187.