Iridium-Catalyzed Intermolecular Asymmetric Dearomatization of β-Naphthols with Allyl Alcohols or Allyl Ethers
Hang-Fei Tu
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032 China
Search for more papers by this authorProf. Dr. Chao Zheng
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032 China
Search for more papers by this authorRen-Qi Xu
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032 China
Search for more papers by this authorXi-Jia Liu
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shu-Li You
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032 China
Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 China
Search for more papers by this authorHang-Fei Tu
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032 China
Search for more papers by this authorProf. Dr. Chao Zheng
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032 China
Search for more papers by this authorRen-Qi Xu
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032 China
Search for more papers by this authorXi-Jia Liu
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shu-Li You
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032 China
Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 China
Search for more papers by this authorGraphical Abstract
Introducing asymmetry: The iridium catalyst generated from [{Ir(cod)Cl}2] (cod=cyclooctadiene) and a chiral P/olefin ligand facilitates the intermolecular asymmetric dearomatization of β-naphthols with allyl alcohols or allyl ethers. Highly functionalized β-naphthalenone compounds bearing an all-carbon-substituted quaternary chiral center were obtained in up to 92 % yield and 98 % ee.
Abstract
An Ir-catalyzed intermolecular asymmetric dearomatization reaction of β-naphthols with allyl alcohols or allyl ethers was developed. When an iridium catalyst generated from [Ir(COD)Cl]2 (COD=cyclooctadiene) and a chiral P/olefin ligand is employed, highly functionalized β-naphthalenone compounds bearing an all-carbon-substituted quaternary chiral center were obtained in up to 92 % yield and 98 % ee. The direct utilization of allyl alcohols as electrophiles represents an improvement from the viewpoint of atom economy. Allyl ethers were found to undergo asymmetric allylic substitution reaction under Ir catalysis for the first time. The diverse transformations of the dearomatized product to various motifs render this method attractive.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201609654-sup-0001-misc_information.pdf3.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1a“Phenol derivatives”: H. Fiege, H.-W. Voges, T. Hamamoto, S. Umemura, T. Iwata, H. Miki, Y. Fujita, H.-J. Buysch, D. Garbe, W. Paulus in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000;
- 1b“Phenol”: M. Weber, M. Weber, M. Kleine-Boymann in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2004.
- 2For selected reviews on dearomatization reactions:
- 2aA. R. Pape, K. P. Kaliappan, E. P. Kündig, Chem. Rev. 2000, 100, 2917–2940;
- 2bE. P. Kündig, A. R. Pape, Top. Organomet. Chem. 2004, 7, 71–94;
- 2cW. D. Harman, Top. Organomet. Chem. 2004, 7, 95–127;
- 2dF. L. Ortiz, M. J. Iglesias, I. Fernández, C. M. A. Sánchez, G. R. Gómez, Chem. Rev. 2007, 107, 1580–1691;
- 2eS. P. Roche, J. A. Porco, Jr., Angew. Chem. Int. Ed. 2011, 50, 4068–4093; Angew. Chem. 2011, 123, 4154–4179;
- 2fC.-X. Zhuo, W. Zhang, S.-L. You, Angew. Chem. Int. Ed. 2012, 51, 12662–12686; Angew. Chem. 2012, 124, 12834–12858;
- 2gC.-X. Zhuo, C. Zheng, S.-L. You, Acc. Chem. Res. 2014, 47, 2558–2573.
- 3For selected reviews on dearomatization reactions of phenols and naphthols:
- 3aA. Pelter, R. S. Ward, Tetrahedron 2001, 57, 273–282;
- 3bS. Quideau, L. Pouységu, D. Deffieux, Synlett 2008, 467–495;
- 3cL. Pouységu, D. Deffieux, S. Quideau, Tetrahedron 2010, 66, 2235–2261;
- 3dL. Pouységu, T. Sylla, T. Garnier, L. B. Rojas, J. Charris, D. Deffieux, S. Quideau, Tetrahedron 2010, 66, 5908–5917;
- 3eQ. Ding, Y. Ye, R. Fan, Synthesis 2013, 1–16;
- 3fW.-T. Wu, L. Zhang, S.-L. You, Chem. Soc. Rev. 2016, 45, 1570–1580;
- 3gW. Sun, G. Li, L. Hong, R. Wang, Org. Biomol. Chem. 2016, 14, 2164–2176.
- 4For selected recent examples of transition-metal-catalyzed dearomatization of phenols:
- 4aS. Rousseaux, J. García-Fortanet, M. A. D. A. Sanchez, S. L. Buchwald, J. Am. Chem. Soc. 2011, 133, 9282–9285;
- 4bA. Rudolph, P. H. Bos, A. Meetsma, A. J. Minnaard, B. L. Feringa, Angew. Chem. Int. Ed. 2011, 50, 5834–5838; Angew. Chem. 2011, 123, 5956–5960;
- 4cT. Oguma, T. Katsuki, J. Am. Chem. Soc. 2012, 134, 20017–20020;
- 4dJ. Nan, Z. Zuo, L. Luo, L. Bai, H. Zheng, Y. Yuan, J. Liu, X. Luan, J. Am. Chem. Soc. 2013, 135, 17306–17309;
- 4eT. Nemoto, Z. Zhao, T. Yokosaka, Y. Suzuki, R. Wu, Y. Hamada, Angew. Chem. Int. Ed. 2013, 52, 2217–2220; Angew. Chem. 2013, 125, 2273–2276;
- 4fR.-Q. Xu, Q. Gu, W.-T. Wu, Z.-A. Zhao, S.-L. You, J. Am. Chem. Soc. 2014, 136, 15469–15472;
- 4gT. Nemoto, N. Matsuo, Y. Hamada, Adv. Synth. Catal. 2014, 356, 2417–2421;
- 4hL. Yang, H. Zheng, L. Luo, J. Nan, J. Liu, Y. Wang, X. Luan, J. Am. Chem. Soc. 2015, 137, 4876–4879;
- 4iJ. Zheng, S.-B. Wang, C. Zheng, S.-L. You, J. Am. Chem. Soc. 2015, 137, 4880–4883;
- 4jD. Yang, L. Wang, F. Han, D. Li, D. Zhao, R. Wang, Angew. Chem. Int. Ed. 2015, 54, 2185–2189; Angew. Chem. 2015, 127, 2213–2217;
- 4kJ. Nan, J. Liu, H. Zheng, Z. Zuo, L. Hou, H. Hu, Y. Wang, X. Luan, Angew. Chem. Int. Ed. 2015, 54, 2356–2360; Angew. Chem. 2015, 127, 2386–2390;
- 4lK. Du, P. Guo, Y. Chen, Z. Cao, Z. Wang, W. Tang, Angew. Chem. Int. Ed. 2015, 54, 3033–3037; Angew. Chem. 2015, 127, 3076–3080;
- 4mD. Yang, L. Wang, M. Kai, D. Li, X. Yao, R. Wang, Angew. Chem. Int. Ed. 2015, 54, 9523–9527; Angew. Chem. 2015, 127, 9659–9663;
- 4nX. Lian, L. Lin, G. Wang, X. Liu, X. Feng, Chem. Eur. J. 2015, 21, 17453–17458;
- 4oL. Bai, Y. Yuan, J. Liu, J. Wu, L. Han, H. Wang, Y. Wang, X. Luan, Angew. Chem. Int. Ed. 2016, 55, 6946–6950; Angew. Chem. 2016, 128, 7060–7064;
- 4pR.-Q. Xu, P. Yang, H.-F. Tu, S.-G. Wang, S.-L. You, Angew. Chem. Int. Ed. 2016, 55, 15137–15141; Angew. Chem. 2016, 128, 15361–15365;
- 4qW.-T. Wu, R.-Q. Xu, L. Zhang, S.-L. You, Chem. Sci. 2016, 7, 3427–3431;
- 4rB. Heid, B. Plietker, Synthesis 2016, 340–350.
- 5For selected examples of palladium catalysis:
- 5aB. M. Trost, F. D. Toste, J. Am. Chem. Soc. 1998, 120, 815–816;
- 5bB. M. Trost, F. D. Toste, J. Am. Chem. Soc. 2003, 125, 3090–3100;
- 5cB. M. Trost, M. L. Crawley, Chem. Eur. J. 2004, 10, 2237–2252; for selected examples of iridium catalysis:
- 5dF. López, T. Ohmura, J. F. Hartwig, J. Am. Chem. Soc. 2003, 125, 3426–3427;
- 5eC. Fischer, C. Defieber, T. Suzuki, E. M. Carreira, J. Am. Chem. Soc. 2004, 126, 1628–1629;
- 5fM. Kimura, Y. Uozumi, J. Org. Chem. 2007, 72, 707–714; for an example of rhodium catalysis:
- 5gP. A. Evans, D. K. Leahy, J. Am. Chem. Soc. 2000, 122, 5012–5013.
- 6
- 6aT. Nemoto, Y. Ishige, M. Yoshida, Y. Kohno, M. Kanematsu, Y. Hamada, Org. Lett. 2010, 12, 5020–5023;
- 6bM. Yoshida, T. Nemoto, Z. Zhao, Y. Ishige, Y. Hamada, Tetrahedron: Asymmetry 2012, 23, 859–866.
- 7
- 7aQ.-F. Wu, W.-B. Liu, C.-X. Zhuo, Z.-Q. Rong, K.-Y. Ye, S.-L. You, Angew. Chem. Int. Ed. 2011, 50, 4455–4458; Angew. Chem. 2011, 123, 4547–4550;
- 7bQ. Cheng, Y. Wang, S.-L. You, Angew. Chem. Int. Ed. 2016, 55, 3496–3499; Angew. Chem. 2016, 128, 3557–3560.
- 8
- 8aC.-X. Zhuo, S.-L. You, Angew. Chem. Int. Ed. 2013, 52, 10056–10059; Angew. Chem. 2013, 125, 10240–10243;
- 8bC.-X. Zhuo, S.-L. You, Adv. Synth. Catal. 2014, 356, 2020–2028.
- 9For reviews on allyl alcohol as electrophile in transition-metal-catalyzed allylic substitution reactions, see:
- 9aY. Tamaru, Eur. J. Org. Chem. 2005, 2647–2656;
- 9bJ. Muzart, Tetrahedron 2005, 61, 4179–4212;
- 9cM. Bandini, G. Cera, M. Chiarucci, Synthesis 2012, 504–512;
- 9dB. Sundararaju, M. Achard, C. Bruneau, Chem. Soc. Rev. 2012, 41, 4467–4483;
- 9eN. A. Butt, W. Zhang, Chem. Soc. Rev. 2015, 44, 7929–7967; for recent examples of Ir-catalyzed allylic substitution reactions using allyl alcohol as the electrophile, see:
- 9fY. Yamashita, A. Gopalarathnam, J. F. Hartwig, J. Am. Chem. Soc. 2007, 129, 7508–7509;
- 9gC. Defieber, M. A. Ariger, P. Moriel, E. M. Carreira, Angew. Chem. Int. Ed. 2007, 46, 3139–3143; Angew. Chem. 2007, 119, 3200–3204.
- 10Allyl ethers have been used in some metal-catalyzed coupling reactions. For selected examples with Pd catalysis:
- 10aT. Nishikata, B. H. Lipshutz, J. Am. Chem. Soc. 2009, 131, 12103–12105;
- 10bR. Moser, T. Nishikata, B. H. Lipshutz, Org. Lett. 2010, 12, 28–31;
- 10cX. Huo, M. Quan, G. Yang, X. Zhao, D. Liu, Y. Liu, W. Zhang, Org. Lett. 2014, 16, 1570–1573; for selected examples with Ni catalysis:
- 10dM. T. Didiuk, J. P. Morken, A. H. Hoveyda, J. Am. Chem. Soc. 1995, 117, 7273–7274;
- 10eN. Nomura, T. V. RajanBabu, Tetrahedron Lett. 1997, 38, 1713–1716;
- 10fM. T. Didiuk, J. P. Morken, A. H. Hoveyda, Tetrahedron 1998, 54, 1117–1130;
- 10gR. Matsubara, T. F. Jamison, J. Am. Chem. Soc. 2010, 132, 6880–6881;
- 10hJ.-L. Tao, B. Yang, Z.-X. Wang, J. Org. Chem. 2015, 80, 12627–12634; for selected examples with Cu catalysis:
- 10iF. Bertozzi, M. Pineschi, F. Macchia, L. A. Arnold, A. J. Minnaard, B. L. Feringa, Org. Lett. 2002, 4, 2703–2705;
- 10jJ. K. Park, H. H. Lackey, B. A. Ondrusek, D. T. McQuade, J. Am. Chem. Soc. 2011, 133, 2410–2413;
- 10kM. Pérez, M. Fañanás-Mastral, V. Hornillos, A. Rudolph, P. H. Bos, S. R. Harutyunyan, B. L. Feringa, Chem. Eur. J. 2012, 18, 11880–11883; for selected examples with Zr catalysis:
- 10lN. Suzuki, D. Y. Kondakov, T. Takahashi, J. Am. Chem. Soc. 1993, 115, 8485–8486;
- 10mM. S. Visser, N. M. Heron, M. T. Didiuk, J. F. Sagal, A. H. Hoveyda, J. Am. Chem. Soc. 1996, 118, 4291–4298;
- 10nN. M. Heron, J. A. Adams, A. H. Hoveyda, J. Am. Chem. Soc. 1997, 119, 6205–6206; for selected examples with Rh catalysis:
- 10oH. Yasui, K. Mizutani, H. Yorimitsu, K. Oshima, Tetrahedron 2006, 62, 1410–1415;
- 10pA. Boyer, M. Lautens, Angew. Chem. Int. Ed. 2011, 50, 7346–7349; Angew. Chem. 2011, 123, 7484–7487; for selected example with Fe catalysis:
- 10qL. Qi, E. Ma, F. Jia, Z. Li, Tetrahedron Lett. 2016, 57, 2211–2214.
- 11For selected reviews on iridium-catalyzed allylic substitution reactions:
- 11aG. Helmchen, A. Dahnz, P. Dübon, M. Schelwies, R. Weihofen, Chem. Commun. 2007, 675–691;
- 11bG. Helmchen in Iridium Complexes in Organic Synthesis (Eds.: ), Wiley-VCH, Weinheim, 2009, pp. 211–250;
- 11cJ. F. Hartwig, L. M. Stanley, Acc. Chem. Res. 2010, 43, 1461–1475;
- 11dJ. F. Hartwig, M. J. Pouy, Top. Organomet. Chem. 2011, 34, 169–208;
- 11eW.-B. Liu, J.-B. Xia, S.-L. You, Top. Organomet. Chem. 2012, 38, 155–208;
- 11fP. Tosatti, A. Nelson, S. P. Marsden, Org. Biomol. Chem. 2012, 10, 3147–3163;
- 11gW. Liu, X. Zhao, Synthesis 2013, 2051–2069; for selected examples of iridium-catalyzed allylic substitution reactions with allyl alcohol:
- 11hM. Roggen, E. M. Carreira, J. Am. Chem. Soc. 2010, 132, 11917–11919;
- 11iM. Roggen, E. M. Carreira, Angew. Chem. Int. Ed. 2011, 50, 5568–5571; Angew. Chem. 2011, 123, 5683–5686;
- 11jM. A. Schafroth, D. Sarlah, S. Krautwald, E. M. Carreira, J. Am. Chem. Soc. 2012, 134, 20276–20278;
- 11kM. Lafrance, M. Roggen, E. M. Carreira, Angew. Chem. Int. Ed. 2012, 51, 3470–3473; Angew. Chem. 2012, 124, 3527–3530;
- 11lM. Roggen, E. M. Carreira, Angew. Chem. Int. Ed. 2012, 51, 8652–8655; Angew. Chem. 2012, 124, 8780–8783;
- 11mS. Krautwald, D. Sarlah, M. A. Schafroth, E. M. Carreira, Science 2013, 340, 1065–1068;
- 11nJ. Y. Hamilton, D. Sarlah, E. M. Carreira, J. Am. Chem. Soc. 2013, 135, 994–997;
- 11oJ. Y. Hamilton, D. Sarlah, E. M. Carreira, Angew. Chem. Int. Ed. 2013, 52, 7532–7535; Angew. Chem. 2013, 125, 7680–7683;
- 11pJ. Y. Hamilton, D. Sarlah, E. M. Carreira, J. Am. Chem. Soc. 2014, 136, 3006–3009;
- 11qS. Krautwald, M. A. Schafroth, D. Sarlah, E. M. Carreira, J. Am. Chem. Soc. 2014, 136, 3020–3023;
- 11rJ. Y. Hamilton, N. Hauser, D. Sarlah, E. M. Carreira, Angew. Chem. Int. Ed. 2014, 53, 10759–10762; Angew. Chem. 2014, 126, 10935–10938;
- 11sT. Sandmeier, S. Krautwald, H. F. Zipfel, E. M. Carreira, Angew. Chem. Int. Ed. 2015, 54, 14363–14367; Angew. Chem. 2015, 127, 14571–14575;
- 11tS.-Z. Jiang, X.-Y. Zeng, X. Liang, T. Lei, K. Wei, Y.-R. Yang, Angew. Chem. Int. Ed. 2016, 55, 4044–4048; Angew. Chem. 2016, 128, 4112–4116.