An Easily Accessed Nickel Nanoparticle Catalyst for Alkene Hydrosilylation with Tertiary Silanes
Ivan Buslov
Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ISCI-LSCI, BCH 3305, 1015 Lausanne, Switzerland
Search for more papers by this authorDr. Fang Song
Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ISCI-LSCI, BCH 3305, 1015 Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Xile Hu
Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ISCI-LSCI, BCH 3305, 1015 Lausanne, Switzerland
Search for more papers by this authorIvan Buslov
Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ISCI-LSCI, BCH 3305, 1015 Lausanne, Switzerland
Search for more papers by this authorDr. Fang Song
Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ISCI-LSCI, BCH 3305, 1015 Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Xile Hu
Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ISCI-LSCI, BCH 3305, 1015 Lausanne, Switzerland
Search for more papers by this authorGraphical Abstract
Abstract
The first efficient and non-precious nanoparticle catalyst for alkene hydrosilylation with commercially relevant tertiary silanes has been developed. The nickel nanoparticle catalyst was prepared in situ from a simple nickel alkoxide precatalyst Ni(OtBu)2⋅x KCl. The catalyst exhibits high activity for anti-Markovnikov hydrosilylation of unactivated terminal alkenes and isomerizing hydrosilylation of internal alkenes. The catalyst can be applied to synthesize a single terminal alkyl silane from a mixture of internal and terminal alkene isomers, and to remotely functionalize an internal alkene derived from a fatty acid.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201606832-sup-0001-misc_information.pdf5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aI. Ojima in The Chemistry of Organic Silicon Compounds (Ed.: ), Wiley Interscience, New York, 1989, p. 1479;
10.1002/0470025107.ch25 Google Scholar
- 1bB. Marciniec, J. Gulinski, W. Urbaniac, Z. W. Kornetka, Comprehensive Handbook on Hydrosilylation, Pergamon, Oxford, UK, 1992;
- 1cB. Marciniec, Hydrosilylation: A Comprehensive Review on Recent Advances, Springer, Berlin, 2009;
10.1007/978-1-4020-8172-9 Google Scholar
- 1dS. Putzien, O. Nuyken, F. E. Kühn, Prog. Polym. Sci. 2010, 35, 687.
- 2P. B. Hitchcock, M. F. Lappert, N. J. W. Warhurst, Angew. Chem. Int. Ed. Engl. 1991, 30, 438; Angew. Chem. 1991, 103, 439.
- 3
- 3aJ. L. Speier, J. A. Webster, G. H. Barnes, J. Am. Chem. Soc. 1957, 79, 974;
- 3bJ. L. Speier, F. G. A. Stone, W. Robert in Advances in Organometallic Chemistry, Vol. 17, Academic Press, New York, 1979, p. 407.
- 4
- 4aS. C. Bart, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc. 2004, 126, 13794;
- 4bK. Kamata, A. Suzuki, Y. Nakai, H. Nakazawa, Organometallics 2012, 31, 3825;
- 4cD. Peng, Y. Zhang, X. Du, L. Zhang, X. Leng, M. D. Walter, Z. Huang, J. Am. Chem. Soc. 2013, 135, 19154;
- 4dJ. Chen, B. Cheng, M. Cao, Z. Lu, Angew. Chem. Int. Ed. 2015, 54, 4661; Angew. Chem. 2015, 127, 4744.
- 5
- 5aZ. Mo, Y. Liu, L. Deng, Angew. Chem. Int. Ed. 2013, 52, 10845; Angew. Chem. 2013, 125, 11045;
- 5bJ. Sun, L. Deng, ACS Catal. 2016, 6, 290.
- 6
- 6aY. Chen, C. Sui-Seng, S. Boucher, D. Zargarian, Organometallics 2005, 24, 149;
- 6bI. Hyder, M. Jiménez-Tenorio, M. C. Puerta, P. Valerga, Dalton Trans. 2007, 3000;
- 6cM. I. Lipschutz, T. D. Tilley, Chem. Commun. 2012, 48, 7146;
- 6dV. Srinivas, Y. Nakajima, W. Ando, K. Sato, S. Shimada, Catal. Sci. Technol. 2015, 5, 2081;
- 6eI. Buslov, J. Becouse, S. Mazza, M. Montandon-Clerc, X. Hu, Angew. Chem. Int. Ed. 2015, 54, 14523; Angew. Chem. 2015, 127, 14731.
- 7A. M. Tondreau, C. C. H. Atienza, K. J. Weller, S. A. Nye, K. M. Lewis, J. G. P. Delis, P. J. Chirik, Science 2012, 335, 567.
- 8
- 8aC. Chen, M. B. Hecht, A. Kavara, W. W. Brennessel, B. Q. Mercado, D. J. Weix, P. L. Holland, J. Am. Chem. Soc. 2015, 137, 13244;
- 8bD. Noda, A. Tahara, Y. Sunada, H. Nagashima, J. Am. Chem. Soc. 2016, 138, 2480;
- 8cC. H. Schuster, T. Diao, I. Pappas, P. J. Chirik, ACS Catal. 2016, 6, 2632.
- 9
- 9aM. F. Lappert, T. A. Nile, S. Takahashi, J. Organomet. Chem. 1974, 72, 425;
- 9bB. Marciniec, H. Maciejewski, J. Mirecki, J. Organomet. Chem. 1991, 418, 61;
- 9cB. Marciniec, H. Maciejewski, I. Kownacki, J. Mol. Catal. A 1998, 135, 223.
- 10V. Srinivas, Y. Nakajima, W. Ando, K. Sato, S. Shimada, J. Organomet. Chem. 2016, 809, 57.
- 11
- 11aM. A. Brook, H. A. Ketelson, F. J. LaRonde, R. Pelton, Inorg. Chim. Acta 1997, 264, 125;
- 11bB. P. S. Chauhan, J. S. Rathore, J. Am. Chem. Soc. 2005, 127, 5790;
- 11cY. Bai, S. Zhang, Y. Deng, J. Peng, J. Li, Y. Hu, X. Li, G. Lai, J. Colloid Interface Sci. 2013, 394, 428;
- 11dT. Galeandro-Diamant, M.-L. Zanota, R. Sayah, L. Veyre, C. Nikitine, C. de Bellefon, S. Marrot, V. Meille, C. Thieuleux, Chem. Commun. 2015, 51, 16194.
- 12
- 12aL. N. Lewis, N. Lewis, J. Am. Chem. Soc. 1986, 108, 7228;
- 12bL. N. Lewis, J. Am. Chem. Soc. 1990, 112, 5998;
- 12cJ. Stein, L. N. Lewis, Y. Gao, R. A. Scott, J. Am. Chem. Soc. 1999, 121, 3693.
- 13
- 13aB. Marciniec, Coord. Chem. Rev. 2005, 249, 2374;
- 13bA. K. Roy in Advances in Organometallic Chemistry, Vol. 55 (Eds.: ), Academic Press, New York, 2007, p. 1;
10.1016/S0065-3055(07)55001-X Google Scholar
- 13cY. Nakajima, S. Shimada, RSC Adv. 2015, 5, 20603.
- 14B. P. Baranwal, R. C. Mehrotra, Aust. J. Chem. 1980, 33, 37.
- 15H. Liu, H. Li, X. Wang, Small 2016, 12, 2969.
- 16
- 16aJ. A. Creighton, D. G. Eadon, J. Chem. Soc. Faraday Trans. 1991, 87, 3881;
- 16bS. Kim, B. K. Yoo, K. Chun, W. Kang, J. Choo, M.-S. Gong, S.-W. Joo, J. Mol. Catal. A 2005, 226, 231.
- 17E. A. Chernyshev, Z. V. Belyakova, L. K. Knyazeva, N. N. Khromykh, Russ. J. Gen. Chem. 2007, 77, 55.
- 18Z. V. Belyakova, M. G. Pomerantseva, L. A. Efimova, E. A. Chernyshev, P. A. Storozhenko, Russ. J. Gen. Chem. 2010, 80, 728.
- 19
- 19aA. Vasseur, J. Bruffaerts, I. Marek, Nat. Chem. 2016, 8, 209;
- 19bV. Goldbach, P. Roesle, S. Mecking, ACS Catal. 2015, 5, 5951;
- 19cT. Huber, D. Firlbeck, H. M. Riepl, J. Organomet. Chem. 2013, 744, 144;
- 19dC. C. H. Atienza, T. Diao, K. J. Weller, S. A. Nye, K. M. Lewis, J. G. P. Delis, J. L. Boyer, A. K. Roy, P. J. Chirik, J. Am. Chem. Soc. 2014, 136, 12108;
- 19eX. Jia, Z. Huang, Nat. Chem. 2015, 8, 157.
- 20
- 20aS. Chikkali, S. Mecking, Angew. Chem. Int. Ed. 2012, 51, 5802; Angew. Chem. 2012, 124, 5902;
- 20bU. Biermann, U. Bornscheuer, M. A. R. Meier, J. O. Metzger, H. J. Schäfer, Angew. Chem. Int. Ed. 2011, 50, 3854; Angew. Chem. 2011, 123, 3938.