Mimicking Primitive Photobacteria: Sustainable Hydrogen Evolution Based on Peptide–Porphyrin Co-Assemblies with a Self-Mineralized Reaction Center
Dr. Kai Liu
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
University of Chinese Academy of Sciences, 100049 Beijing, China
Search for more papers by this authorDr. Ruirui Xing
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
Search for more papers by this authorYongxin Li
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
University of Chinese Academy of Sciences, 100049 Beijing, China
Search for more papers by this authorDr. Qianli Zou
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
Search for more papers by this authorProf. Dr. Helmuth Möhwald
Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam/Golm, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Xuehai Yan
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
Search for more papers by this authorDr. Kai Liu
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
University of Chinese Academy of Sciences, 100049 Beijing, China
Search for more papers by this authorDr. Ruirui Xing
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
Search for more papers by this authorYongxin Li
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
University of Chinese Academy of Sciences, 100049 Beijing, China
Search for more papers by this authorDr. Qianli Zou
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
Search for more papers by this authorProf. Dr. Helmuth Möhwald
Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam/Golm, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Xuehai Yan
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
Search for more papers by this authorGraphical Abstract
Mimicking primitive photosystems: Self-organization, dynamic evolution, and sustainable utilization of components in a “prebiotic soup” are conceptually and experimentally validated through simple but well-functioning peptide–porphyrin co-assemblies, which support a new type of primitive hydrogen producing photobacteria model.
Abstract
Molecular evolution, with self-organization of simple molecules towards complex functional systems, provides a new strategy for biomimetic architectonics and perspectives for understanding the complex processes of life. However, there remain many challenges to fabrication of systems comprising different types of units, which interact with one another to perform desired functions. Challenges arise from a lack of stability, dynamic properties, and functionalities that reconcile with a given environment. A co-assembling fiber system composed of simple peptide and porphyrin is presented. This material is considered a prebiotic assembly of molecules that can be rather stable and flexibly self-functionalized with the assistance of visible light in a “prebiotic soup”; acidic (pH 2), hot (70 °C), and mineral-containing (Na+, Ti4+, Pt2+, and so forth) water. The co-assembled peptide–porphyrin fiber, with self-mineralized reaction centers, may serve as a primitive photobacteria-like cellular model to achieve light harvesting, energy transfer, and ultimately sustainable hydrogen evolution.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201606795-sup-0001-misc_information.pdf1,016.6 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. A. Grzybowski, W. T. S. Huck, Nat. Nanotechnol. 2016, 11, 585–592;
- 1bK. Ariga, J. Li, J. Fei, Q. Ji, J. P. Hill, Adv. Mater. 2016, 28, 1251–1286;
- 1cW. Wang, W. T. Duan, S. Ahmed, A. Sen, T. E. Mallouk, Acc. Chem. Res. 2015, 48, 1938–1946;
- 1dJ. Wang, K. Liu, R. Xing, X. Yan, Chem. Soc. Rev. 2016, DOI: 10.1039/c6cs00176a.
- 2
- 2aI. A. Chen, P. Walde, Cold Spring Harbor Perspect. Biol. 2010, 2, a 002170;
- 2bS. Koga, D. S. Williams, A. W. Perriman, S. Mann, Nat. Chem. 2011, 3, 720–724;
- 2cW. M. Aumiller, Jr., C. D. Keating, Nat. Chem. 2016, 8, 129–137;
- 2dX. Liu, P. Zhou, Y. Huang, M. Li, X. Huang, S. Mann, Angew. Chem. Int. Ed. 2016, 55, 7095–7100; Angew. Chem. 2016, 128, 7211–7216.
- 3
- 3aR. Croce, H. van Amerongen, Nat. Chem. Biol. 2014, 10, 492–501;
- 3bX. C. Qin, M. Suga, T. Y. Kuang, J. R. Shen, Science 2015, 348, 989–995;
- 3cQ. Zou, K. Liu, M. Abbas, X. Yan, Adv. Mater. 2016, 28, 1031–1043.
- 4T. S. Balaban, Acc. Chem. Res. 2005, 38, 612–623.
- 5G. S. Orf, R. E. Blankenship, Photosynth. Res. 2013, 116, 315–331.
- 6
- 6aS. Patwardhan, S. Sengupta, L. D. A. Siebbeles, F. Wurthner, F. C. Grozema, J. Am. Chem. Soc. 2012, 134, 16147–16150;
- 6bK. K. Sakimoto, A. B. Wong, P. D. Yang, Science 2016, 351, 74–77;
- 6cL. B. Modesto-Lopez, E. J. Thimsen, A. M. Collins, R. E. Blankenship, P. Biswas, Energy Environ. Sci. 2010, 3, 216–222;
- 6dL. M. Utschig, S. C. Silver, K. L. Mulfort, D. M. Tiede, J. Am. Chem. Soc. 2011, 133, 16334–16337.
- 7D. Deamer, A. L. Weber, Cold Spring Harbor Perspect. Biol. 2010, 2, a 004929.
- 8J. M. Olson, R. E. Blankenship, Photosynth. Res. 2004, 80, 373–386.
- 9
- 9aI. Ghosh, J. Chmielewski, Curr. Opin. Chem. Biol. 2004, 8, 640–644;
- 9bN. P. Kamat, S. Tobé, I. T. Hill, J. W. Szostak, Angew. Chem. Int. Ed. 2015, 54, 11735–11739; Angew. Chem. 2015, 127, 11901–11905;
- 9cA. Córdova, W. Zou, P. Dziedzic, I. Ibrahem, E. Reyes, Y. Xu, Chem. Eur. J. 2006, 12, 5383–5397.
- 10
- 10aQ. Zou, L. Zhang, X. Yan, A. Wang, G. Ma, J. Li, H. Möhwald, S. Mann, Angew. Chem. Int. Ed. 2014, 53, 2366–2370; Angew. Chem. 2014, 126, 2398–2402;
- 10bK. Liu, R. Xing, C. Chen, G. Shen, L. Yan, Q. Zou, G. Ma, H. Möhwald, X. Yan, Angew. Chem. Int. Ed. 2015, 54, 500–505; Angew. Chem. 2015, 127, 510–515;
- 10cK. Liu, R. Xing, Q. Zou, G. Ma, H. Möhwald, X. Yan, Angew. Chem. Int. Ed. 2016, 55, 3036–3039; Angew. Chem. 2016, 128, 3088–3091;
- 10dK. Liu, R. Zhang, Y. Li, T. Jiao, D. Ding, X. Yan, Adv. Mater. Interfaces. 2016, DOI: 10.1002/admi.201600183.
- 11E. Nisbet, N. Sleep, Nature 2001, 409, 1083–1091.
- 12T. D. Brock, K. M. Brock, R. T. Belly, R. L. Weiss, Arch. Mikrobiol. 1972, 84, 54–68.
- 13
- 13aJ. M. Lehn, Angew. Chem. Int. Ed. 2013, 52, 2836–2850; Angew. Chem. 2013, 125, 2906–2921;
- 13bK. Dose, Interdiscipl. Sci. Rev. 1988, 13, 348–356.
- 14K. Liu, Y. Kang, G. Ma, H. Möhwald, X. Yan, Phys. Chem. Chem. Phys. 2016, 18, 16738–16747.
- 15E. Mattia, S. Otto, Nat. Nanotechnol. 2015, 10, 111–119.
- 16J. D. Badjić, A. Nelson, S. J. Cantrill, W. B. Turnbull, J. F. Stoddart, Acc. Chem. Res. 2005, 38, 723–732.
- 17N. Kröger, M. B. Dickerson, G. Ahmad, Y. Cai, M. S. Haluska, K. H. Sandhage, N. Poulsen, V. C. Sheppard, Angew. Chem. Int. Ed. 2006, 45, 7239–7243; Angew. Chem. 2006, 118, 7397–7401.
- 18H. C. Fry, Y. Liu, N. M. Dimitrijevic, T. Rajh, Nat. Commun. 2014, 5, 4606.
- 19G. T. Oostergetel, H. van Amerongen, E. J. Boekema, Photosynth. Res. 2010, 104, 245–255.
- 20S. Verma, H. N. Ghosh, J. Phys. Chem. Lett. 2012, 3, 1877–1884.
- 21Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev. 2014, 114, 9987–10043.
- 22W. R. Duncan, O. V. Prezhdo, Annu. Rev. Phys. Chem. 2007, 58, 143–184.
- 23E. Reisner, D. J. Powell, C. Cavazza, J. C. Fontecilla-Camps, F. A. Armstrong, J. Am. Chem. Soc. 2009, 131, 18457–18466.
- 24C. W. Leishman, J. L. McHale, J. Phys. Chem. C 2015, 119, 28167–28181.
- 25D. Mauzerall, Photosynth. Res. 1992, 33, 163–170.
- 26L. E. Orgel, Trends Biochem. Sci. 1998, 23, 491–495.