One Hundred Years of the Max-Planck-Institut für Kohlenforschung
Corresponding Author
Prof. Dr. Manfred T. Reetz
Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Strasse, 35032 Marburg (Germany)
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)
Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Strasse, 35032 Marburg (Germany)Search for more papers by this authorCorresponding Author
Prof. Dr. Manfred T. Reetz
Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Strasse, 35032 Marburg (Germany)
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)
Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Strasse, 35032 Marburg (Germany)Search for more papers by this authorGraphical Abstract
Catalysis pure: This Essay is an account of the institutional and scientific development of the Max-Planck-Institut für Kohlenforschung in Mülheim an der Ruhr (Germany), which is the successor to the Kaiser-Wilhelm-Institut für Kohlenforschung founded in 1914. It is an institute that has focused on catalysis for 100 years. Key historical events, organizational changes, and research highlights of four major periods are featured.
Abstract
This Essay is an account of the institutional and scientific development of the Max-Planck-Institut für Kohlenforschung in Mülheim an der Ruhr (Germany), which is the successor to the Kaiser-Wilhelm-Institut für Kohlenforschung founded in 1914. The Essay is divided into four main parts, corresponding to the four major periods which are closely associated with the respective Directors of the Institute from 1914 to 2014: 1) Franz Fischer; 2) Karl Ziegler; 3) Günther Wilke; and 4) the period beginning with Manfred T. Reetz, who established a directorate comprising five Directors of equal status, each heading a different research department under the banner of catalysis. Along with key historical events associated with the Institute, research highlights of the four periods are featured.
References
- 1For a detailed account of the history of the Kaiser Wilhelm Society and the Max Planck Society and their Institutes, see: Die Kaiser-Wilhelm-/Max-Planck-Institute: Das Harnack-Prinzip (Eds.: ), Walter de Gruyter, Berlin, 1996.
- 2Historical comments concerning the Harnack Principle: “Bemerkungen zum sogenannten Harnack-Prinzip. Mythos und Realität”: R. Vierhaus in Die Kaiser-Wilhelm-/Max-Planck-Institute: Das Harnack-Prinzip (Eds.: ), Walter de Gruyter, Berlin, 1996, S. 129–138.
- 3“Die Kaiser-Wilhelm-/Max-Planck-Gesellschaft und ihre Institute zwischen Universität und Akademie. Strukturprobleme und Historiographie”: B. vom Brocke in Die Kaiser-Wilhelm-/Max-Planck-Institute: Das Harnack-Prinzip (Eds.: ), Walter de Gruyter, Berlin, 1996, pp. 1–32.
10.1515/9783110802443 Google Scholar
- 4For an account of 100 years of the Fritz Haber Institute, see: B. Friedrich, D. H. Hoffmann, J. James, Angew. Chem. 2011, 123, 10198–10225;
10.1002/ange.201104792 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 10022–10049.
- 5
- 5aFor an account of the history of the Kaiser-Wilhelm-Institut für Kohlenforschung up to 1943, see: M. Rasch, Gechichte des Kaiser-Wilhelm-Instituts für Kohlenforschung 1913–1943, VCH, Weinheim, 1989;
- 5bfor an account of the development of the KWI für Kohlenforschung and its successor MPI für Kohlenforschung up to 2008, see: M. W. Haenel, Historical Landmarks of Chemistry: Karl Ziegler, 2008, accessible free of charge from the German Chemical Society (GDCh, Frankfurt/Germany).
- 6
- 6aF. Fischer, H. Tropsch, Chem. Ber. 1926, 59, 830–831;
- 6bfor a historical account of the Fischer–Tropsch process,[5, 8] see: H. Schulz, Appl. Catal. A 1999, 186, 3–12.
- 7
- 7aU. Deichmann, Flüchten, Mitmachen, Vergessen—Chemiker und Biochemiker in der Nationalsozialistischen Zeit, Wiley-VCH, Weinheim, 2001;
10.1002/3527603026 Google Scholar
- 7bU. Deichmann, Angew. Chem. 2002, 114, 1364–1383;
10.1002/1521-3757(20020415)114:8<1364::AID-ANGE1364>3.0.CO;2-V Google ScholarAngew. Chem. Int. Ed. 2002, 41, 1310–1328.10.1002/1521-3773(20020415)41:8<1310::AID-ANIE1310>3.0.CO;2-7 CAS PubMed Web of Science® Google Scholar
- 8
- 8aW. A. Herrmann, Angew. Chem. 1982, 94, 118–131; Angew. Chem. Int. Ed. Engl. 1982, 21, 117–130;
- 8bA. Y. Khodakov, W. Chu, P. Fongarland, Chem. Rev. 2007, 107, 1692–1744;
- 8cD. D. Hibbitts, B. T. Loveless, M. Neurock, E. Iglesia, Angew. Chem. 2013, 125, 12499–12504;
10.1002/ange.201304610 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 12273–12278.
- 9K. Ziegler, Liebigs Ann. Chem. 1921, 425, 217–280.
10.1002/jlac.19214250302 Google Scholar
- 10K. Ziegler, H. Colonius, Liebigs Ann. Chem. 1930, 479, 135–149.
- 11K. Ziegler, F. Crössmann, H. Kleiner, O. Schäfer, Liebigs Ann. Chem. 1929, 473, 1–35.
- 12K. Ziegler, H. Kleiner, Liebigs Ann. Chem. 1929, 473, 57–82.
- 13K. Ziegler, A. Späth, E. Schaaf, W. Schumann, E. Winkelmann, Liebigs Ann. Chem. 1942, 551, 80–119.
- 14K. Ziegler, G. O. Schenck, E. W. Krockow, A. Siebert, A. Wenz, Liebigs Ann. Chem. 1942, 551, 1–79.
- 15
- 15aFor an account of the historical background of Karl Ziegler’s offer to succeed Franz Fischer and details of his move to Mülheim,[5b] see: “Universitätslehrstuhl oder Forschungsinstitut? Karl Zieglers Berufung zum Direktor des Kaiser-Wilhelm-Instituts für Kohlenforschung im Jahr 1943”: M. Rasch in Die Kaiser-Wilhelm-/Max-Planck-Institute: Das Harnack-Prinzip (Eds.: ), Walter de Gruyter, Berlin, 1996, pp. 469–504;
- 15bfor a historical account of Halle University (Martin-Luther-Universität) during the Nazi regime 1933–1945, which includes information on Karl Ziegler, see: H. Eberle, Die Martin-Luther-Universität in der Zeit des Nationalsozialismus 1933–1945, mdv Mitteldeutscher Verlag, Halle (Saale), 2002.
- 16In a special issue of Chemiker-Zeitung dedicated to “chemistry in the service of national supply of raw materials”, Ziegler reported new results of his research on butadiene polymerization,[12] the product being a potential substitute for natural rubber: K. Ziegler, Chem.-Ztg. 1938, 125–127.
- 17For G. Wilke’s account of the Ziegler era, see:
- 17aG. Wilke, Angew. Chem. 2003, 115, 5150–5159;
10.1002/ange.200330056 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 5000–5008;
- 17bSee also: G. Wilke, Liebigs Ann. Chem. 1975, 804–833.
- 18
- 18aK. Ziegler, H. G. Gellert, H. Kühlhorn, H. Martin, K. Nagel, H. Sauer, K. Zosel, Angew. Chem. 1952, 64, 323–329;
- 18bFor an early review of the Mülheim polymerization process, see: K. Ziegler, E. Holzkamp, H. Breil, H. Martin, Angew. Chem. 1955, 67, 541–547.
- 19
- 19aH. Martin, Polymers, Patents, Profits: A Classic Case Study for Patent Infighting, Wiley-VCH, Weinheim, 2007;
10.1002/9783527610402 Google Scholar
- 19bH. Martin, Polymere und Patente, Wiley-VCH, Weinheim, 2002.
- 20aNobel Lecture, K. Ziegler, Angew. Chem. 1964, 76, 545–553; “Consequences and developments of an invention”: K. Ziegler in Nobel Lectures: Chemistry 1963–1970, World Scientific, Singapore, 1999;
- 20bNobel Lecture, G. Natta, Angew. Chem. 1964, 76, 553–556; “From the stereospecific polymerization to the asymmetric autocatalytic synthesis of macromolecules”: G. Natta in Nobel Lectures: Chemistry 1963–1970, World Scientific, Singapore, 1999.
- 21H. Koch, W. Haaf, Liebigs Ann. Chem. 1958, 618, 251–266.
- 22K. Zosel, Angew. Chem. 1978, 90, 748–755; Angew. Chem. Int. Ed. Engl. 1978, 17, 702–708.
- 23See for example:
- 23aG. Wilke, B. Bogdanović, Angew. Chem. 1961, 73, 756;
- 23bG. Wilke, B. Bogdanović, P. Borner, H. Breil, P. Hardt, P. Heimbach, G. Herrmann, H.-J. Kaminsky, W. Keim, M. Kröner, H. Müller, E. W. Müller, W. Oberkirch, J. Schneider, J. Stedefeder, K. Tanaka, K. Weyer, Angew. Chem. 1963, 75, 10–20; Angew. Chem. Int. Ed. Engl. 1963, 2, 105–115;
- 23cG. Wilke, B. Bogdanović, P. Hardt, P. Heimbach, W. Keim, M. Kröner, W. Oberkirch, K. Tanaka, E. Steinrücke, D. Walter, H. Zimmermann, Angew. Chem. 1966, 78, 157–172;
10.1002/ange.19660780302 Google ScholarAngew. Chem. Int. Ed. Engl. 1966, 5, 151–164.
- 24Comprehensive reviews of Ni-chemistry and catalysis:
- 24aK. Fischer, K. Jonas, P. Misbach, R. Stabba, G. Wilke, Angew. Chem. 1973, 85, 1001–1012; Angew. Chem. Int. Ed. Engl. 1973, 12, 943–953;
- 24bG. Wilke, Angew. Chem. 1988, 100, 189–211; Angew. Chem. Int. Ed. Engl. 1988, 27, 185–206;
- 24cP. W. Jolly, G. Wilke, Organic Chemistry of Nickel, Vols. I–II, Academic Press, New York, 1974; P. W. Jolly, G. Wilke, Organic Chemistry of Nickel, Vols. I–II, Academic Press, New York, 1975.
- 25For a personal account of the development of the Pfaltz chemistry from corrin-based ligands to asymmetric catalysis, see: A. Pfaltz, Synlett 1999, 835–842.
- 26
- 26aM. H. Haenel, J. Narangerel, U. B. Richter, Angew. Chem. 2006, 118, 1077–1082;
10.1002/ange.200502614 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 1061–1066;
- 26b“Catalysis in Direct Coal Liquefaction”: M. W. Haenel in Handbook of Hetereogeneous Catalysis, Vol. 6 (Eds.: ), Wiley-VCH, Weinheim, 2008, pp. 3023–3036.
- 27aReview of Mülheim methods for preparing nanostructured metal and metal oxide colloids: “Size-selective Synthesis of Nanostructured Metal and Metal Oxide-Colloids and Their Use as Catalysts”: M. T. Reetz in Nanoparticles and Catalysis (Ed.: ), Wiley-VCH, Weinheim, 2008, pp. 255–279;
- 27bReview of the concept of using mixtures of monodentate ligands in the control of enantio-, diastereo- and regioselective transition metal catalyzed reactions: M. T. Reetz, Angew. Chem. 2008, 120, 2592–2626;
10.1002/ange.200704327 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 2556–2588;
- 27cH. M. deVries, L. Lefort, J. A. F. Boogers, J. G. deVries, D. J. Ager, Chim. Oggi 2005, 23, 18–22;
- 27d“Practical Protocols for Lipase Immobilization Via Sol-Gel Techiques: M. T. Reetz in Methods in Biotechnology (Immobilization of Enzymes and Cells), Vol. 22, 2ednd ed(Ed.: ), Humana, Totowa, 2013, pp. 241–254.
10.1007/978-1-62703-550-7_16 Google Scholar
- 28
- 28aM. T. Reetz, A. Zonta, K. Schimossek, K. Liebeton, K.-E. Jaeger, Angew. Chem. 1997, 109, 2961–2963;
10.1002/ange.19971092446 Google ScholarAngew. Chem. Int. Ed. Engl. 1997, 36, 2830–2832;
- 28bM. T. Reetz, S. Wilensek, D. Zha, K.-E. Jaeger, Angew. Chem. 2001, 113, 3701–3703;
10.1002/1521-3757(20011001)113:19<3701::AID-ANGE3701>3.0.CO;2-0 Google ScholarAngew. Chem. Int. Ed. 2001, 40, 3589–3591;10.1002/1521-3773(20011001)40:19<3589::AID-ANIE3589>3.0.CO;2-X CAS PubMed Web of Science® Google Scholar
- 28cM. T. Reetz, Proc. Natl. Acad. Sci. USA 2004, 101, 5716–5722.
- 29
- 29aH. Liao, T. McKenzie, R. Hagemann, Proc. Natl. Acad. Sci. USA 1986, 83, 576–580;
- 29bK. Chen, F. H. Arnold, Proc. Natl. Acad. Sci. USA 1993, 90, 5618–5622;
- 29cOverview of directed evolution:[32] Protein Engineering Handbook, Vol. 1–2 (Eds.: ), Wiley-VCH, Weinheim, 2009.
- 30aD. W. Leung, E. Chen, D. V. Goeddel, Technique 1989, 1, 11–15;
- 30bD. A. Estell, T. P. Graycar, J. A. Wells, J. Biol. Chem. 1985, 260, 6518–6521;
- 30cW. P. C. Stemmer, Nature 1994, 370, 389–391.
- 31
- 31aM. Bocola, N. Otte, K.-E. Jaeger, M. T. Reetz, W. Thiel, ChemBioChem 2004, 5, 214–223;
- 31bM. T. Reetz, M. Puls, J. D. Carballeira, A. Vogel, K.-E. Jaeger, T. Eggert, W. Thiel, M. Bocola, N. Otte, ChemBioChem 2007, 8, 106–112.
- 32
- 32aReview of directed evolution[29c] of stereoselective enzymes with emphasis on saturation mutagenesis and its extension to ISM: M. T. Reetz, Angew. Chem. 2011, 123, 144–182; Angew. Chem. Int. Ed. 2011, 50, 138–174;
- 32bPerspective on biocatalysis in organic chemistry and biotechnology: M. T. Reetz, J. Am. Chem. Soc. 2013, 135, 12480–12496;
- 32cReview of ISM with practical hints: C. G. Acevedo-Rocha, S. Kille, M. T. Reetz, Methods Molec. Biol., Humana Press, Totowa, in press.
- 33M. T. Reetz, J. D. Carballeira, Nat. Protoc. 2007, 2, 891–903.
- 34M. T. Reetz, S. Prasad, J. D. Carballeira, Y. Gumulya, M. Bocola, J. Am. Chem. Soc. 2010, 132, 9144–9152.
- 35Review of additive versus non-additive cooperative mutations in enzymology and protein engineering: M. T. Reetz, Angew. Chem. 2013, 125, 2720–2729;
10.1002/ange.201207842 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 2658–2666.
- 36aR. Agudo, G.-D. Roiban, M. T. Reetz, J. Am. Chem. Soc. 2013, 135, 1665–1668;
- 36bS. Kille, F. E. Zilly, J. P. Acevedo, M. T. Reetz, Nat. Chem. 2011, 3, 738–743;
- 36cR. Agudo, G.-D. Roiban, M. T. Reetz, ChemBioChem 2012, 13, 1465–1473;
- 36dG.-D. Roiban, R. Agudo, M. T. Reetz, Angew. Chem. 2014, 126, 8803–8807; Angew. Chem. Int. Ed. 2014, 53, 8659–8663.
- 37Use of ISM to modulate lignin biosynthesis for better utilization of plants in paper making, biofuel production, and agriculture: M.-W. Bhuiya, C.-J. Liu, J. Biol. Chem. 2010, 285, 277–285.
- 38R. Agudo, M. T. Reetz, Chem. Commun. 2013, 49, 10914–10916.
- 39A. Fürstner, Angew. Chem. 1993, 105, 171–197; Angew. Chem. Int. Ed. Engl. 1993, 32, 164–189.
- 40A. Fürstner, A. Hupperts, J. Am. Chem. Soc. 1995, 117, 4468–4475.
- 41A. Fürstner, N. Shi, J. Am. Chem. Soc. 1996, 118, 12349–12357.
- 42A. Fürstner, K. Langemann, J. Org. Chem. 1996, 61, 3942–3943.
- 43
- 43aReview of olefin metathesis: A. Fürstner, Angew. Chem. 2000, 112, 3140–3172;
10.1002/1521-3757(20000901)112:17<3140::AID-ANGE3140>3.0.CO;2-G Google ScholarAngew. Chem. Int. Ed. 2000, 39, 3012–3043;10.1002/1521-3773(20000901)39:17<3012::AID-ANIE3012>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 43bReview of olefin and alkyne metathesis with emphasis on stereoselectivity: A. Fürstner, Science 2013, 341, 1229713;
- 43cEssay on the role of transition-metal catalysts in natural product synthesis: A. Fürstner, Angew. Chem. 2014, 126, 4907–4911;
10.1002/ange.201402080 Google ScholarAngew. Chem. Int. Ed. 2014, 53, 4807–4811.
- 44A. Fürstner, K. Langemann, J. Am. Chem. Soc. 1997, 119, 9130–9136.
- 45aA. Fürstner, F. Jeanjean, P. Razon, Angew. Chem. 2002, 114, 2203–2206;
10.1002/1521-3757(20020617)114:12<2203::AID-ANGE2203>3.0.CO;2-M Google ScholarAngew. Chem. Int. Ed. 2002, 41, 2097–2101;10.1002/1521-3773(20020617)41:12<2097::AID-ANIE2097>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 45bA. Fürstner, C. Nevado, M. Waser, M. Tremblay, C. Chevrier, F. Teplý, C. Aïssa, E. Moulin, O. Müller, J. Am. Chem. Soc. 2007, 129, 9150–9161;
- 45cJ. Gagnepain, E. Moulin, A. Fürstner, Chem. Eur. J. 2011, 17, 6964–6972.
- 46J. Heppekausen, A. Fürstner, Angew. Chem. 2011, 123, 7975–7978;
10.1002/ange.201102012 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 7829–7832.
- 47For a recent review of alkyne metathesis, see: A. Fürstner, Angew. Chem. 2013, 125, 2860–2887;
10.1002/ange.201204513 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 2794–2819.
- 48G. Valot, C. S. Regens, D. P. O’Malley, E. Godineau, H. Takikawa, A. Fürstner, Angew. Chem. 2013, 125, 9713–9717;
10.1002/ange.201301700 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 9534–9538.
- 49
- 49aK. Radkowski, B. Sundararaju, A. Fürstner, Angew. Chem. 2013, 125, 373–378;
10.1002/ange.201205946 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 355–360;
- 49bB. Sundararaju, A. Fürstner, Angew. Chem. 2013, 125, 14300–14304;
10.1002/ange.201307584 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 14050–14054.
- 50Review of alkynophilic Lewis acid catalysts with emphasis on platinum and gold complexes: A. Fürstner, P. W. Davies, Angew. Chem. 2007, 119, 3478–3519;
10.1002/ange.200604335 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 3410–3449.
- 51A. Fürstner, P. Hannen, Chem. Eur. J. 2006, 12, 3006–3019.
- 52H. Teller, M. Corbet, L. Mantilli, G. Gopakumar, R. Goddard, W. Thiel, A. Fürstner, J. Am. Chem. Soc. 2012, 134, 15331–15342.
- 53
- 53aA. Fürstner, A. Leitner, M. Méndez, H. Krause, J. Am. Chem. Soc. 2002, 124, 13856–13863;
- 53breview of Fe-catalysis: B. D. Sherry, A. Fürstner, Acc. Chem. Res. 2008, 41, 1500–1511.
- 54R. Althoff, G. Schulz-Dobrick, F. Schüth, K. K. Unger, Microporous Mater. 1993, 1, 207–218.
- 55F. Schüth, D. Demuth, B. Zibrowius, J. Kornatowski, G. Finger, J. Am. Chem. Soc. 1994, 116, 1090–1095.
- 56Q. Huo, D. Margolese, U. Ciesla, P. Feng, T. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schüth, G. D. Stucky, Nature 1994, 368, 317–321.
- 57Comprehensively covered in: “High Throughput Experimentation in Heterogeneous Catalysis”: F. Schüth in Handbook of Heterogeneous Catalysis (Eds.: ), Wiley-VCH, Weinheim, 2008, pp. 2053–2074.
- 58J. Klein, C. W. Lehmann, W. F. Maier, Angew. Chem. 1998, 110, 3557–3561;
10.1002/(SICI)1521-3757(19981217)110:24<3557::AID-ANGE3557>3.0.CO;2-7 Web of Science® Google ScholarAngew. Chem. Int. Ed. 1998, 37, 3369–3372.10.1002/(SICI)1521-3773(19981231)37:24<3369::AID-ANIE3369>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 59
- 59aC. Hoffmann, H. W. Schmidt, F. Schüth, J. Catal. 2001, 198, 348–354;
- 59bC. Kiener, M. Kurtz, H. Wilmer, C. Hoffmann, H. W. Schmidt, J. D. Grunwaldt, M. Muhler, F. Schüth, J. Catal. 2003, 216, 110–119.
- 60C. Klanner, D. Farrusseng, L. Baumes, M. Lengliz, C. Mirodatos, F. Schüth, Angew. Chem. 2004, 116, 5461–5463;
10.1002/ange.200460731 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 5347–5349.
- 61
- 61aB. Bogdanović, T. H. Hartwig, B. Spliethoff, Int. J. Hydrogen Energy 1993, 18, 575–589;
- 61bB. Bogdanović, M. Schwickardi, J. Alloys Compd. 1997, 253, 1–9.
- 62
- 62aF. Schüth, B. Bogdanović, M. Felderhoff, Chem. Commun. 2004, 2249–2258;
- 62bB. Bogdanović, M. Felderhoff, S. Kaskel, A. Pommerin, K. Schlichte, F. Schüth, Adv. Mater. 2003, 15, 1012–1015;
- 62cB. Bogdanović, M. Felderhoff, A. Pommerin, F. Schüth, N. Spielkamp, Adv. Mater. 2006, 18, 1198–1201;
- 62dM. Felderhoff, K. Klementiev, W. Grünert, B. Spliethoff, B. Tesche, J. M. Bellosta von Colbe, B. Bogdanović, M. Hartel, A. Pommerin, F. Schüth, C. Weidenthaler, Phys. Chem. Chem. Phys. 2004, 6, 4369–4374;
- 62eJ. M. Bellosta von Colbe, W. Schmidt, M. Felderhoff, B. Bogdanović, F. Schüth, Angew. Chem. 2006, 118, 3745–3747;
10.1002/ange.200504425 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 3663–3665;
- 62fM. Felderhoff, B. Zibrowius, Phys. Chem. Chem. Phys. 2011, 13, 17234–17241.
- 63R. Ryoo, S. H. Joo, S. Jun, J. Phys. Chem. B 1999, 103, 7743–7746.
- 64
- 64aA. H. Lu, W. Schmidt, A. Taguchi, B. Spliethoff, B. Tesche, F. Schüth, Angew. Chem. 2002, 114, 3639–3642;
Angew. Chem. Int. Ed. 2002, 41, 3489–3492;
10.1002/1521-3773(20020916)41:18<3489::AID-ANIE3489>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 64bA. H. Lu, A. Kiefer, W. Schmidt, F. Schüth, Chem. Mater. 2004, 16, 100–103;
- 64cY. Q. Wang, C. M. Yang, W. Schmidt, B. Spliethoff, E. Bill, F. Schüth, Adv. Mater. 2005, 17, 53–56;
- 64dH. Tüysüz, E. L. Salabas, E. Bill, H. Bongard, B. Spliethoff, C. W. Lehmann, F. Schüth, Chem. Mater. 2012, 24, 2493–2500;
- 64eH. Tüysüz, C. W. Lehmann, H. Bongard, B. Tesche, R. Schmidt, F. Schüth, J. Am. Chem. Soc. 2008, 130, 11510–11517.
- 65aA. H. Lu, W. Schmidt, N. Matoussevitch, H. Bönnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schüth, Angew. Chem. 2004, 116, 4403–4406; Angew. Chem. Int. Ed. 2004, 43, 4303–4306;
- 65bA. H. Lu, J. J. Nitz, M. Comotti, C. Weidenthaler, K. Schlichte, C. W. Lehman, O. Terasaki, F. Schüth, J. Am. Chem. Soc. 2010, 132, 14152–14162;
- 65cA. H. Lu, W. C. Li, Z. S. Hou, F. Schüth, Chem. Commun. 2007, 1038–1040;
- 65dM. Comotti, W. C. Li, B. Spliefhoff, F. Schüth, J. Am. Chem. Soc. 2006, 128, 917–924;
- 65eP. Arnal, M. Comotti, F. Schüth, Angew. Chem. 2006, 118, 8404–8407;
10.1002/ange.200603507 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 8224–8227.
- 66C. Galeano, J. C. Meier, V. Peinecke, H. Bongard, I. Katsounaros, A. A. Topalov, A. H. Lu, K. J. J. Mayrhofer, F. Schüth, J. Am. Chem. Soc. 2012, 134, 20457–20465.
- 67R. Palkovits, M. Antonietti, P. Kuhn, A. Thomas, F. Schüth, Angew. Chem. 2009, 121, 7042–7045;
10.1002/ange.200902009 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 6909–6912.
- 68aR. Rinaldi, R. Palkovits, F. Schüth, Angew. Chem. 2008, 120, 8167–8170;
10.1002/ange.200802879 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 8047–8050;
- 68bN. Meine, R. Rinaldi, F. Schüth, ChemSusChem 2012, 5, 1449–1454;
- 68cJ. Hilgert, N. Meine, R. Rinaldi, F. Schüth, Energy Environ. Sci. 2013, 6, 92–96;
- 68dR. Carrasquillo-Flores, M. Kaldstrom, F. Schüth, J. Dumesic, R. Rinaldi, ACS Catal. 2013, 3, 993–997;
- 68eG.-H. Wang, J. Hilgert, F. H. Richter, F. Wang, H.-J. Bongard, B. Spliethoff, C. Weidenthaler, F. Schüth, Nat. Mater. 2014, 13, 293–300.
- 69X. Y. Wang, R. Rinaldi, Angew. Chem. 2013, 125, 11713–11717; Angew. Chem. Int. Ed. 2013, 52, 11499–11503.
- 70aM. J. S. Dewar, W. Thiel, J. Am. Chem. Soc. 1977, 99, 4899–4907;
- 70bW. Thiel, Angew. Chem. 2014, 126, 8748–8757; Angew. Chem. Int. Ed. 2014, 53, 8605–8613.
- 71aS. N. Yurchenko, M. Carvajal, P. Jensen, H. Lin, J. Zheng, W. Thiel, Mol. Phys. 2005, 103, 359–378;
- 71bS. N. Yurchenko, W. Thiel, P. Jensen, J. Mol. Spectrosc. 2007, 245, 126–140;
- 71cS. N. Yurchenko, R. J. Barber, A. Yachmenev, W. Thiel, P. Jensen, J. Tennyson, J. Phys. Chem. A 2009, 113, 11845–11855;
- 71dA. Yachmenev, I. Polyak, W. Thiel, J. Chem. Phys. 2013, 139, 204308.
- 72M. R. Silva-Junior, M. Schreiber, S. P. A. Sauer, W. Thiel, J. Chem. Phys. 2010, 133, 174318.
- 73M. T. Reetz, A. Meiswinkel, G. Mehler, K. Angermund, M. Graf, W. Thiel, R. Mynott, D. Blackmond, J. Am. Chem. Soc. 2005, 127, 10305–10313.
- 74L. J. Goossen, D. Koley, H. L. Hermann, W. Thiel, J. Am. Chem. Soc. 2005, 127, 11102–11114.
- 75
- 75aC. Karafilidis, H. Hermann, A. Rufinska, B. Gabor, R. J. Mynott, G. Breitenbruch, C. Weidenthaler, J. Rust, W. Joppek, M. S. Brookhart, W. Thiel, G. Fink, Angew. Chem. 2004, 116, 2498–2500;
10.1002/ange.200353454 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 2444–2446;
- 75bA. Döhring, V. R. Jensen, P. W. Jolly, W. Thiel, J. C. Weber, Organometallics 2001, 20, 2234–2245.
- 76O. Lifchits, M. Mahlau, C. M. Reisinger, A. Lee, C. Farès, I. Polyak, G. Gopakumar, W. Thiel, B. List, J. Am. Chem. Soc. 2013, 135, 6677–6693.
- 77D. Audisio, G. Gopakumar, L.-G. Xie, L. G. Alves, C. Wirtz, A. M. Martins, W. Thiel, C. Farès, N. Maulide, Angew. Chem. 2013, 125, 6434–6438;
10.1002/ange.201301034 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 6313–6316.
- 78J. Carreras, M. Patil, W. Thiel, M. Alcarazo, J. Am. Chem. Soc. 2012, 134, 16753–16758.
- 79C. Loerbroks, R. Rinaldi, W. Thiel, Chem. Eur. J. 2013, 19, 16282–16294.
- 80
- 80aN. Otte, M. Scholten, W. Thiel, J. Phys. Chem. A 2007, 111, 5751–5755;
- 80bM. R. Silva-Junior, W. Thiel, J. Chem. Theory Comput. 2010, 6, 1546–1564;
- 80cM. Korth, W. Thiel, J. Chem. Theory Comput. 2011, 7, 2929–2936.
- 81A. Koslowski, M. E. Beck, W. Thiel, J. Comput. Chem. 2003, 24, 714–726.
- 82E. Fabiano, T. W. Keal, W. Thiel, Chem. Phys. 2008, 349, 334–347.
- 83X. Wu, A. Koslowski, W. Thiel, J. Chem. Theory Comput. 2012, 8, 2272–2281.
- 84aO. Weingart, Z. Lan, A. Koslowski, W. Thiel, J. Phys. Chem. Lett. 2011, 2, 1506–1509;
- 84bA. Kazaryan, Z. Lan, L. V. Schäfer, W. Thiel, M. Filatov, J. Chem. Theory Comput. 2011, 7, 2189–2199;
- 84cG. Cui, Z. Lan, W. Thiel, J. Am. Chem. Soc. 2012, 134, 1662–1672;
- 84dG. Cui, W. Thiel, Angew. Chem. 2013, 125, 451–454; Angew. Chem. Int. Ed. 2013, 52, 433–436.
- 85Y. Lu, Z. Lan, W. Thiel, Angew. Chem. 2011, 123, 6996–6999; Angew. Chem. Int. Ed. 2011, 50, 6864–6867.
- 86For reviews of QM/MM treatments of enzymes, see:
- 86aH. M. Senn, W. Thiel, Top. Curr. Chem. 2007, 268, 173–290;
- 86bH. M. Senn, W. Thiel, Angew. Chem. 2009, 121, 1220–1254;
10.1002/ange.200802019 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 1198–1229.
- 87S. Metz, J. Kästner, A. A. Sokol, T. W. Keal, P. Sherwood, WIRES Comput. Mol. Sci. 2014, 4, 101–110.
- 88
- 88aT. Benighaus, W. Thiel, J. Chem. Theory Comput. 2009, 5, 3114–3128;
- 88bE. Boulanger, W. Thiel, J. Chem. Theory Comput. 2012, 8, 4527–4538.
- 89aJ. C. Schöneboom, H. Lin, N. Reuter, W. Thiel, S. Cohen, F. Ogliaro, S. Shaik, J. Am. Chem. Soc. 2002, 124, 8142–8151;
- 89bJ. C. Schöneboom, S. Cohen, H. Lin, S. Shaik, W. Thiel, J. Am. Chem. Soc. 2004, 126, 4017–4034.
- 90
- 90aS. Shaik, D. Kumar, S. P. de Visser, A. Altun, W. Thiel, Chem. Rev. 2005, 105, 2279–2328;
- 90bS. Shaik, S. Cohen, Y. Wang, H. Chen, D. Kumar, W. Thiel, Chem. Rev. 2010, 110, 949–1017.
- 91See Ref. [31].
- 92aI. Polyak, M. T. Reetz, W. Thiel, J. Am. Chem. Soc. 2012, 134, 2732–2741;
- 92bI. Polyak, M. T. Reetz, W. Thiel, J. Phys. Chem. B 2013, 117, 4993–5001.
- 93
- 93aB. List, R. A. Lerner, C. F. Barbas III, J. Am. Chem. Soc. 2000, 122, 2395–2396;
- 93breview of early work on enamine-catalysis: B. List, Synlett 2001, 1675–1686.
- 94N. Vignola, B. List, J. Am. Chem. Soc. 2004, 126, 450–451.
- 95aB. List, I. Čorić, O. O. Grygorenko, P. S. Kaib, I. Komarov, A. Lee, M. Leutzsch, S. C. Pan, A. V. Tymtsunik, M. van Gemmeren, Angew. Chem. 2014, 126, 286–289;
10.1002/ange.201306037 Google ScholarAngew. Chem. Int. Ed. 2014, 53, 282–285;
- 95bJ. W. Yang, C. Chandler, M. Stadler, D. Kampen, B. List, Nature 2008, 452, 453–455.
- 96aJ. W. Yang, M. T. H. Fonseca, B. List, Angew. Chem. 2004, 116, 6829–6832; Angew. Chem. Int. Ed. 2004, 43, 6660–6662;
- 96bJ. W. Yang, M. H. Fonseca, N. Vignola, B. List, Angew. Chem. 2005, 117, 110–112; Angew. Chem. Int. Ed. 2005, 44, 108–110.
- 97S. G. Ouellet, J. B. Tuttle, D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 32–33.
- 98aT. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew. Chem. 2004, 116, 1592–1594;
10.1002/ange.200353240 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 1566–1568;
- 98bD. Uraguchi, M. Terada, J. Am. Chem. Soc. 2004, 126, 5356–5357.
- 99S. Hoffmann, A. M. Seayad, B. List, Angew. Chem. 2005, 117, 7590–7593;
10.1002/ange.200503062 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 7424–7427.
- 100aI. Čorić, B. List, Nature 2012, 483, 315–319;
- 100bJ. H. Kim, I. Čorić, S. Vellalath, B. List, Angew. Chem. 2013, 125, 4570–4573; Angew. Chem. Int. Ed. 2013, 52, 4474–4477;
- 100cS. Liao, I. Čorić, Q. Wang, B. List, J. Am. Chem. Soc. 2012, 134, 10765–10768.
- 101For a review of ACDC, see: M. Mahlau, B. List, Angew. Chem. 2013, 125, 540–556;
10.1002/ange.201205343 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 518–533.
- 102S. Mayer, B. List, Angew. Chem. 2006, 118, 4299–4301; Angew. Chem. Int. Ed. 2006, 45, 4193–4195.
- 103
- 103aP. García-García, F. Lay, P. García-García, C. Rabalakos, B. List, Angew. Chem. 2009, 121, 4427–4430;
10.1002/ange.200901768 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 4363–4366;
- 103bL. Ratjen, P. García-García, F. Lay, M. E. Beck, B. List, Angew. Chem. 2011, 123, 780–784; Angew. Chem. Int. Ed. 2011, 50, 754–758;
- 103cJ. Guin, C. Rabalakos, B. List, Angew. Chem. 2012, 124, 8989–8993;
10.1002/ange.201204262 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 8859–8863;
- 103dM. Mahlau, P. García-García, B. List, Chemistry 2012, 18, 16283–16287;
- 103eQ. Wang, M. Leutzsch, M. van Gemmeren, B. List, J. Am. Chem. Soc. 2013, 135, 15334–15337;
- 103fS. Gandhi, B. List, Angew. Chem. 2013, 125, 2633–2636;
10.1002/ange.201209776 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 2573–2576.
- 104J. W. Lee, T. Mayer-Gall, K. Opwis, C. E. Song, J. S. Gutmann, B. List, Science 2013, 341, 1225–1229.
- 105Throughout this Essay, I have used the terms “homogeneous catalyst” and “heterogeneous catalyst” as internationally practiced, although strictly speaking they should be replaced by “molecular catalyst” and “solid catalyst”, respectively. A process can be performed heterogeneously, but the catalytically active species may not be heterogeneous; for example, homogeneous when utilizing a metal net. I thank Ferdi Schüth for pointing this distinction out.