Functionalized Graphene as a Gatekeeper for Chiral Molecules: An Alternative Concept for Chiral Separation†
Corresponding Author
Andreas W. Hauser
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720-1462 (USA)
Andreas W. Hauser, Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720-1462 (USA)
Peter Schwerdtfeger, Centre for Theoretical Chemistry and Physics (CTCP), The New Zealand Institute for Advanced Study (NZIAS), Massey University, Bob Tindall Building, 0632 Auckland (New Zealand)
Search for more papers by this authorNarbe Mardirossian
Department of Chemistry, University of California, Berkeley, CA 94720-1462 (USA)
Search for more papers by this authorJulien A. Panetier
Department of Chemistry, University of California, Berkeley, CA 94720-1462 (USA)
Search for more papers by this authorMartin Head-Gordon
Department of Chemistry, University of California, Berkeley, CA 94720-1462 (USA)
Search for more papers by this authorAlexis T. Bell
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720-1462 (USA)
Search for more papers by this authorCorresponding Author
Peter Schwerdtfeger
Centre for Theoretical Chemistry and Physics (CTCP), The New Zealand Institute for Advanced Study (NZIAS), Massey University, Bob Tindall Building, 0632 Auckland (New Zealand)
Andreas W. Hauser, Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720-1462 (USA)
Peter Schwerdtfeger, Centre for Theoretical Chemistry and Physics (CTCP), The New Zealand Institute for Advanced Study (NZIAS), Massey University, Bob Tindall Building, 0632 Auckland (New Zealand)
Search for more papers by this authorCorresponding Author
Andreas W. Hauser
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720-1462 (USA)
Andreas W. Hauser, Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720-1462 (USA)
Peter Schwerdtfeger, Centre for Theoretical Chemistry and Physics (CTCP), The New Zealand Institute for Advanced Study (NZIAS), Massey University, Bob Tindall Building, 0632 Auckland (New Zealand)
Search for more papers by this authorNarbe Mardirossian
Department of Chemistry, University of California, Berkeley, CA 94720-1462 (USA)
Search for more papers by this authorJulien A. Panetier
Department of Chemistry, University of California, Berkeley, CA 94720-1462 (USA)
Search for more papers by this authorMartin Head-Gordon
Department of Chemistry, University of California, Berkeley, CA 94720-1462 (USA)
Search for more papers by this authorAlexis T. Bell
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720-1462 (USA)
Search for more papers by this authorCorresponding Author
Peter Schwerdtfeger
Centre for Theoretical Chemistry and Physics (CTCP), The New Zealand Institute for Advanced Study (NZIAS), Massey University, Bob Tindall Building, 0632 Auckland (New Zealand)
Andreas W. Hauser, Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720-1462 (USA)
Peter Schwerdtfeger, Centre for Theoretical Chemistry and Physics (CTCP), The New Zealand Institute for Advanced Study (NZIAS), Massey University, Bob Tindall Building, 0632 Auckland (New Zealand)
Search for more papers by this authorA.W.H. thanks Joseph Gomes and Felix Fischer for helpful discussions. Calculations were performed on a cluster provided by the UC Berkeley College of Chemistry through the National Science Foundation (NSF) (Grant CHE-1048789).
Graphical Abstract
Abstract
We propose a new method of chiral separation using functionalized nanoporous graphene as an example. Computational simulations based on density functional theory show that the attachment of a suitable chiral “bouncer” molecule to the pore rim prevents the passage of the undesired enantiomer while letting its mirror image through.
References
- 1J. E. Rekoske, AIChE J. 2001, 47, 2–5.
- 2G. Gübitz, M. G. Schmid, Mol. Biotechnol. 2006, 32, 159–179.
- 3T. J. Ward, B. A. Baker, Anal. Chem. 2008, 80, 4363–4372.
- 4B. Spivak, A. V. Andreev, Phys. Rev. Lett. 2009, 102, 063004.
- 5M. Kostur, M. Schindler, P. Talkner, P. Hänggi, Phys. Rev. Lett. 2006, 96, 014502.
- 6R. Eichhorn, Phys. Rev. Lett. 2010, 105, 034502.
- 7R. Eichhorn, Chem. Phys. 2010, 375, 568–577.
- 8S. Meinhardt, J. Smiatek, R. Eichhorn, F. Schmid, Phys. Rev. Lett. 2012, 108, 214504.
- 9B. Li, D. T. Haynie, Encyclopedia of Chemical Processing, Taylor and Francis, New York 2007, Chap. 44, pp. 449–458.
- 10B. Kesanli, W. Lin, Coord. Chem. Rev. 2003, 246, 305–326.
- 11W. Lin, MRS Bull. 2007, 32, 544–548.
- 12K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666–669.
- 13S. Oyama, D. Lee, P. Hacarlioglu, R. Saraf, J. Membr. Sci. 2004, 244, 45–53.
- 14O. Leenaerts, B. Partoens, F. M. Peeters, Appl. Phys. Lett. 2008, 93, 193107.
- 15M. D. Fischbein, M. Drndic, Appl. Phys. Lett. 2008, 93, 113107.
- 16P. Kuhn, A. Forget, D. Su, A. Thomas, M. Antonietti, J. Am. Chem. Soc. 2008, 130, 13333–13337.
- 17D. C. Bell, M. C. Lemme, L. A. Stern, J. R. Williams, C. M. Marcus, Nanotechnology 2009, 20, 455301.
- 18S. Huh, J. Park, Y. S. Kim, K. S. Kim, B. H. Hong, J.-M. Nam, ACS Nano 2011, 5, 9799–9806.
- 19P. Xu, J. Yang, K. Wang, Z. Zhou, P. Shen, Chin. Sci. Bull. 2012, 57, 2948–2955.
- 20S. P. Koenig, L. Wang, J. Pellegrino, J. S. Bunch, Nat. Nanotechnol. 2012, 7, 728–732.
- 21T. H. J. Dunning, J. Chem. Phys. 1989, 90, 1007–1023.
- 22S. Grimme, J. Comp. Physiol. 2006, 27, 1787–1799.
- 23A full counterpoise correction scheme including monomer deformations is applied.
- 24N. Mardirossian, M. Head-Gordon, J. Chem. Theory Comput. 2013, 9, 4453–4461.
- 25Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. DiStasio, Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W. Gill, M. Head-Gordon, Phys. Chem. Chem. Phys. 2006, 8, 3172–3191.
- 26X. Bao, L. J. Broadbelt, R. Q. Snurr, Microporous Mesoporous Mater. 2012, 157, 118–123.
- 27X. Bao, R. Q. Snurr, L. J. Broadbelt, Microporous Mesoporous Mater. 2013, 172, 44–50.
- 28A. Behn, P. M. Zimmerman, A. T. Bell, M. Head-Gordon, J. Chem. Phys. 2011, 135, 224108.
- 29J. Baker, J. Comput. Chem. 1986, 7, 385–395.
- 30S. Grimme, Chem. Eur. J. 2012, 18, 9955–9964.
- 31The identical adsorption energies for both enantiomers onto a perfect graphene sheet indicate balanced surface-residence probabilities. Therefore, we expect essentially unbiased propagation statistics in future dynamical simulations.
- 32S. S. Glasstone, K. Laidler, H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York, 1941.
- 33D. A. McQuarrie, J. D. Simon, Physical Chemistry: A Molecular Approach, University Science Books, Sausalito, 1997.