Thermodynamics versus Kinetics in Nanosynthesis
Yawen Wang
Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore) http://www.ntu.edu.sg/home/hongyuchen/
Search for more papers by this authorJiating He
Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore) http://www.ntu.edu.sg/home/hongyuchen/
Search for more papers by this authorCuicui Liu
Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore) http://www.ntu.edu.sg/home/hongyuchen/
Search for more papers by this authorWen Han Chong
Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore) http://www.ntu.edu.sg/home/hongyuchen/
Search for more papers by this authorCorresponding Author
Prof. Hongyu Chen
Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore) http://www.ntu.edu.sg/home/hongyuchen/
Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore) http://www.ntu.edu.sg/home/hongyuchen/Search for more papers by this authorYawen Wang
Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore) http://www.ntu.edu.sg/home/hongyuchen/
Search for more papers by this authorJiating He
Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore) http://www.ntu.edu.sg/home/hongyuchen/
Search for more papers by this authorCuicui Liu
Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore) http://www.ntu.edu.sg/home/hongyuchen/
Search for more papers by this authorWen Han Chong
Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore) http://www.ntu.edu.sg/home/hongyuchen/
Search for more papers by this authorCorresponding Author
Prof. Hongyu Chen
Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore) http://www.ntu.edu.sg/home/hongyuchen/
Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore) http://www.ntu.edu.sg/home/hongyuchen/Search for more papers by this authorGraphical Abstract
Understanding starts with distinction: Distinguishing between the thermodynamically and kinetically controlled scenarios is of critical importance when analyzing the complex phenomena in nanosynthesis, such as the growth of nanoparticles, their aggregation, and the shape evolution of polymer nanostructures. The processes are examined in detail in this Review and the mechanistic proposals are categorized in the common framework of thermodynamics and kinetics.
Abstract
One may discover a stone tool by chance but it takes more than luck to make a car or cell phone. With the advance of nanoscience, the synthesis of increasingly sophisticated nanostructures demands a rational design and a systems approach. In this Review, we advocate the distinction between thermodynamically and kinetically controlled scenarios, that is, whether a product forms because it is the most stable state or because the pathway leading to it has the lowest energy barrier. Great endeavours have been made to describe the multiple concurrent processes in typical nanosynthesis phenomena, so that the mechanistic proposals in the literature are brought into a common framework for easy contrast and comparison.
References
- 1
- 1aF. Baletto, R. Ferrando, Rev. Mod. Phys. 2005, 77, 371–423;
- 1bJ. E. McMurry, Organic Chemistry, 7th ed., Brooks/Cole, Belmont, CA, 2008.
- 2
- 2aA. G. Catchpole, E. D. Hughes, C. K. Ingold, J. Chem. Soc. 1948, 8–17;
- 2bH. O. House, B. A. Tefertiller, H. D. Olmstead, J. Org. Chem. 1968, 33, 935–942;
- 2cJ. d′Angelo, Tetrahedron 1976, 32, 2979–2990.
- 3A. Cooksy, Physical Chemistry: Thermodynamics, Statistical Mechanics & Kinetics, Pearson, Boston: 2014.
- 4P. Zhang, F. Xu, A. Navrotsky, J. S. Lee, S. Kim, J. Liu, Chem. Mater. 2007, 19, 5687–5693.
- 5
- 5aY. N. Xia, G. M. Whitesides, Annu. Rev. Mater. Sci. 1998, 28, 153–184;
- 5bJ. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, R. P. Van Duyne, J. Phys. Chem. B 1999, 103, 3854–3863;
- 5cB. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, Chem. Rev. 2005, 105, 1171–1196.
- 6M. A. Fox, J. K. Whitesell, Organic Chemistry, Jones and Bartlett, Sudbury, 1997.
- 7
- 7aA. S. Barnard, J. Mater. Chem. 2006, 16, 813–815;
- 7bA. S. Barnard, Acc. Chem. Res. 2012, 45, 1688–1697.
- 8C. Shang, Z.-P. Liu, J. Chem. Theory Comput. 2013, 9, 1838–1845.
- 9
- 9aD. Chandler, Nature 2005, 437, 640–647;
- 9bW. Blokzijl, J. B. F. N. Engberts, Angew. Chem. 1993, 105, 1610–1650; Angew. Chem. Int. Ed. Engl. 1993, 32, 1545–1579;
- 9cK. J. M. Bishop, C. E. Wilmer, S. Soh, B. A. Grzybowski, Small 2009, 5, 1600–1630.
- 10T. P. Silverstein, J. Chem. Educ. 1998, 75, 116.
- 11N. T. Southall, K. A. Dill, A. D. J. Haymet, J. Phys. Chem. B 2002, 106, 521–533.
- 12
- 12aC. N. R. Rao, G. U. Kulkarni, P. J. Thomas, P. P. Edwards, Chem. Eur. J. 2002, 8, 28–35;
- 12bI. A. Mudunkotuwa, V. H. Grassian, J. Environ. Monit. 2011, 13, 1135–1144;
- 12cR. Dingreville, J. M. Qu, M. Cherkaoui, J. Mech. Phys. Solids 2005, 53, 1827–1854;
- 12dG. Ouyang, C. X. Wang, G. W. Yang, Chem. Rev. 2009, 109, 4221–4247.
- 13
- 13aR. C. Cammarata, K. Sieradzki, Annu. Rev. Mater. Sci. 1994, 24, 215–234;
- 13bK. L. Johnson, K. Kendall, A. D. Roberts, Proc. R. Soc. London Ser. A 1971, 324, 301–313.
- 14J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Chem. Rev. 2005, 105, 1103–1170.
- 15N. Pradhan, D. Reifsnyder, R. Xie, J. Aldana, X. Peng, J. Am. Chem. Soc. 2007, 129, 9500–9509.
- 16J. B. Schlenoff, M. Li, H. Ly, J. Am. Chem. Soc. 1995, 117, 12528–12536.
- 17
- 17aY. Feng, Y. Wang, H. Wang, T. Chen, Y. Y. Tay, L. Yao, Q. Yan, S. Li, H. Chen, Small 2012, 8, 246–251;
- 17bG. Lu, S. Z. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Y. Qi, Y. Wang, X. Wang, S. Y. Han, X. G. Liu, J. S. DuChene, H. Zhang, Q. C. Zhang, X. D. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. H. Yang, J. T. Hupp, F. W. Huo, Nat. Chem. 2012, 4, 310–316;
- 17cM. Sindoro, Y. Feng, S. Xing, H. Li, J. Xu, H. Hu, C. Liu, Y. Wang, H. Zhang, Z. Shen, H. Chen, Angew. Chem. 2011, 123, 10072–10076;
10.1002/ange.201102994 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 9898–9902;
- 17dH. Li, H. L. Xin, D. A. Muller, L. A. Estroff, Science 2009, 326, 1244–1247.
- 18Y. Yin, A. P. Alivisatos, Nature 2005, 437, 664–670.
- 19
- 19aS. Polarz, Adv. Funct. Mater. 2011, 21, 3214–3230;
- 19bC. Herring, Phys. Rev. 1951, 82, 87–93.
- 20
- 20aZ. L. Wang, J. Phys. Chem. B 2000, 104, 1153–1175;
- 20bL. Vitos, A. V. Ruban, H. L. Skriver, J. Kollar, Surf. Sci. 1998, 411, 186–202.
- 21
- 21aC.-Y. Chiu, Y. Li, L. Ruan, X. Ye, C. B. Murray, Y. Huang, Nat. Chem. 2011, 3, 393–399;
- 21bW. A. Al-Saidi, H. Feng, K. A. Fichthorn, Nano Lett. 2012, 12, 997–1001;
- 21cB. Wu, N. Zheng, Nano Today 2013, 8, 168–197;
- 21dQ. Chen, N. V. Richardson, Prog. Surf. Sci. 2003, 73, 59–77;
- 21eY. N. Xia, Y. J. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. 2009, 121, 62–108; Angew. Chem. Int. Ed. 2009, 48, 60–103;
- 21fC. R. Bealing, W. J. Baumgardner, J. J. Choi, T. Hanrath, R. G. Hennig, ACS Nano 2012, 6, 2118–2127;
- 21gJ. J. De Yoreo, P. M. Dove, Science 2004, 306, 1301–1302.
- 22M. Liu, Y. Zheng, L. Zhang, L. Guo, Y. Xia, J. Am. Chem. Soc. 2013, 135, 11752–11755.
- 23
- 23aR. D. James, K. F. Hane, Acta Mater. 2000, 48, 197–222;
- 23bA. G. Evans, R. M. Cannon, Acta Metall. 1986, 34, 761–800.
- 24
- 24aP. W. Voorhees, J. Stat. Phys. 1985, 38, 231–252;
- 24bP. W. Voorhees, Annu. Rev. Mater. Sci. 1992, 22, 197–215.
- 25
- 25aQ. Zhang, W. Li, L.-P. Wen, J. Chen, Y. Xia, Chem. Eur. J. 2010, 16, 10234–10239;
- 25bD. Seo, J. C. Park, H. Song, J. Am. Chem. Soc. 2006, 128, 14863–14870;
- 25cC.-H. Kuo, T.-F. Chiang, L.-J. Chen, M. H. Huang, Langmuir 2004, 20, 7820–7824.
- 26
- 26aV. K. LaMer, R. H. Dinegar, J. Am. Chem. Soc. 1950, 72, 4847–4854;
- 26bJ. Park, J. Joo, S. G. Kwon, Y. Jang, T. Hyeon, Angew. Chem. 2007, 119, 4714–4745; Angew. Chem. Int. Ed. 2007, 46, 4630–4660.
- 27D. Kaščiev, Nucleation: Basic Theory with Applications, Butterworth Heinemann, Oxford, 2000.
- 28T. Wang, D. LaMontagne, J. Lynch, J. Q. Zhuang, Y. C. Cao, Chem. Soc. Rev. 2013, 42, 2804–2823.
- 29J. R. Fried, Polymer Science & Technology, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 2013.
- 30
- 30aM. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun. 1994, 801–802;
- 30bN. R. Jana, L. Gearheart, C. J. Murphy, Langmuir 2001, 17, 6782–6786;
- 30cM. Brust, J. Fink, D. Bethell, D. J. Schiffrin, C. Kiely, J. Chem. Soc. Chem. Commun. 1995, 1655–1656.
- 31
- 31aX. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos, Nature 2000, 404, 59–61;
- 31bC. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 1993, 115, 8706–8715;
- 31cT. Hyeon, Chem. Commun. 2003, 927–934.
- 32
- 32aS. G. Kwon, T. Hyeon, Small 2011, 7, 2685–2702;
- 32bC. de Mello Donegá, P. Liljeroth, D. Vanmaekelbergh, Small 2005, 1, 1152–1162;
- 32cC. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Rev. Mater. Sci. 2000, 30, 545–610.
- 33H. Sun, J. He, J. Wang, S.-Y. Zhang, C. Liu, T. Sritharan, S. Mhaisalkar, M.-Y. Han, D. Wang, H. Chen, J. Am. Chem. Soc. 2013, 135, 9099–9110.
- 34A. R. Tao, S. Habas, P. Yang, Small 2008, 4, 310–325.
- 35Y. Sun, Y. Xia, Science 2002, 298, 2176–2179.
- 36
- 36aJ. Zeng, Y. Zheng, M. Rycenga, J. Tao, Z.-Y. Li, Q. Zhang, Y. Zhu, Y. Xia, J. Am. Chem. Soc. 2010, 132, 8552–8553;
- 36bY. Wang, D. Wan, S. Xie, X. Xia, C. Z. Huang, Y. Xia, ACS Nano 2013, 7, 4586–4594.
- 37Y. Ma, Q. Kuang, Z. Jiang, Z. Xie, R. Huang, L. Zheng, Angew. Chem. 2008, 120, 9033–9036; Angew. Chem. Int. Ed. 2008, 47, 8901–8904.
- 38
- 38aM. L. Personick, C. A. Mirkin, J. Am. Chem. Soc. 2013, 135, 18238–18247;
- 38bM. R. Langille, M. L. Personick, J. Zhang, C. A. Mirkin, J. Am. Chem. Soc. 2012, 134, 14542–14554.
- 39
- 39aN. Wang, Y. Cai, R. Q. Zhang, Mater. Sci. Eng. R 2008, 60, 1–51;
- 39bM. Grzelczak, J. Perez-Juste, P. Mulvaney, L. M. Liz-Marzan, Chem. Soc. Rev. 2008, 37, 1783–1791;
- 39cY. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, Y. Q. Yan, Adv. Mater. 2003, 15, 353–389.
- 40V. Germain, J. Li, D. Ingert, Z. L. Wang, M. P. Pileni, J. Phys. Chem. B 2003, 107, 8717–8720.
- 41
- 41aY. Xiong, J. M. McLellan, J. Chen, Y. Yin, Z.-Y. Li, Y. Xia, J. Am. Chem. Soc. 2005, 127, 17118–17127;
- 41bY. Xiong, I. Washio, J. Chen, H. Cai, Z.-Y. Li, Y. Xia, Langmuir 2006, 22, 8563–8570;
- 41cJ. Goebl, Q. Zhang, L. He, Y. Yin, Angew. Chem. 2012, 124, 567–570;
10.1002/ange.201107240 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 552–555.
- 42Y. Sun, B. Mayers, T. Herricks, Y. Xia, Nano Lett. 2003, 3, 955–960.
- 43C. Lofton, W. Sigmund, Adv. Funct. Mater. 2005, 15, 1197–1208.
- 44
- 44aM. J. Bierman, Y. K. A. Lau, A. V. Kvit, A. L. Schmitt, S. Jin, Science 2008, 320, 1060–1063;
- 44bS. A. Morin, M. J. Bierman, J. Tong, S. Jin, Science 2010, 328, 476–480.
- 45
- 45aJ. Gao, C. M. Bender, C. J. Murphy, Langmuir 2003, 19, 9065–9070;
- 45bC. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, S. Mann, J. Mater. Chem. 2002, 12, 1765–1770.
- 46X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Nat. Nanotechnol. 2011, 6, 28–32.
- 47
- 47aC. Liu, L. Yao, H. Wang, Z. R. Phua, X. Song, H. Chen, Small 2014, 10, 1332–1340;
- 47bC. Liu, G. Chen, H. Sun, J. Xu, Y. Feng, Z. Zhang, T. Wu, H. Chen, Small 2011, 7, 2721–2726.
- 48C. J. Murphy, N. R. Jana, Adv. Mater. 2002, 14, 80–82.
- 49
- 49aN. R. Jana, L. Gearheart, C. J. Murphy, J. Phys. Chem. B 2001, 105, 4065–4067;
- 49bB. Nikoobakht, M. A. El-Sayed, Chem. Mater. 2003, 15, 1957–1962;
- 49cS.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, C. R. C. Wang, Langmuir 1999, 15, 701–709.
- 50Z. Huo, C.-k. Tsung, W. Huang, X. Zhang, P. Yang, Nano Lett. 2008, 8, 2041–2044.
- 51N. Poudyal, G. S. Chaubey, V. Nandwana, C. B. Rong, K. Yano, J. P. Liu, Nanotechnology 2008, 19.
- 52
- 52aT. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, Science 1995, 270, 1791–1794;
- 52bM. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, Science 2001, 292, 1897–1899;
- 52cM. Law, J. Goldberger, P. D. Yang, Annu. Rev. Mater. Res. 2004, 34, 83–122;
- 52dW. Lu, C. M. Lieber, J. Phys. D 2006, 39, R 387–R406;
- 52eS. Kuchibhatla, A. S. Karakoti, D. Bera, S. Seal, Prog. Mater. Sci. 2007, 52, 699–913;
- 52fH. J. Fan, P. Werner, M. Zacharias, Small 2006, 2, 700–717.
- 53J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, W. S. Teo, C. L. Gan, H. Zhang, H. Chen, ACS Nano 2013, 7, 2733–2740.
- 54
- 54aS. Iijima, T. Ichihashi, Phys. Rev. Lett. 1986, 56, 616–619;
- 54bD. J. Smith, A. K. Petford-Long, L. R. Wallenberg, J. O. Bovin, Science 1986, 233, 872–875.
- 55
- 55aL. Ruan, C.-Y. Chiu, Y. Li, Y. Huang, Nano Lett. 2011, 11, 3040–3046;
- 55bB. J. Wiley, Y. Xiong, Z.-Y. Li, Y. Yin, Y. Xia, Nano Lett. 2006, 6, 765–768.
- 56
- 56aE. Ringe, R. P. Van Duyne, L. D. Marks, J. Phys. Chem. C 2013, 117, 15859–15870;
- 56bL. D. Marks, J. Cryst. Growth 1983, 61, 556–566.
- 57B. Wiley, T. Herricks, Y. Sun, Y. Xia, Nano Lett. 2004, 4, 1733–1739.
- 58A. S. Barnard, J. Phys. Chem. B 2006, 110, 24498–24504.
- 59
- 59aQ. Su, D. Xie, J. Zhang, G. Du, B. Xu, ACS Nano 2013, 7, 9115–9121;
- 59bA. Yasuda, N. Kawase, W. Mizutani, J. Phys. Chem. B 2002, 106, 13294–13298;
- 59cL. J. Chen, W. W. Wu, Mater. Sci. Eng. R 2010, 70, 303–319;
- 59dR. Sharma, J. Mater. Res. 2005, 20, 1695–1707;
- 59eA. H. Zewail, Science 2010, 328, 187–193;
- 59fR. Sharma, Microsc. Res. Tech. 2009, 72, 144–152;
- 59gD. Li, M. H. Nielsen, J. J. De Yoreo, Methods in Enzymology, Vol. 532 (Ed.: ), Academic Press, 2013, pp. 147–164.
- 60
- 60aR. Costi, A. E. Saunders, U. Banin, Angew. Chem. 2010, 122, 4996–5016;
10.1002/ange.200906010 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 4878–4897;
- 60bP. D. Cozzoli, T. Pellegrino, L. Manna, Chem. Soc. Rev. 2006, 35, 1195–1208;
- 60cC. de Mello Donegá, Chem. Soc. Rev. 2011, 40, 1512–1546;
- 60dC. Sanchez, B. Julian, P. Belleville, M. Popall, J. Mater. Chem. 2005, 15, 3559–3592.
- 61
- 61aH. Wang, L. Chen, Y. Feng, H. Chen, Acc. Chem. Res. 2013, 46, 1636–1646;
- 61bS. Torza, S. G. Mason, J. Colloid Interface Sci. 1970, 33, 67–83.
- 62S. Xing, L. H. Tan, M. Yang, M. Pan, Y. Lv, Q. Tang, Y. Yang, H. Chen, J. Mater. Chem. 2009, 19, 3286–3291.
- 63
- 63aE. Bauer, Z. Kristallogr. 1958, 110, 372;
- 63bS. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, P. Yang, Nat. Mater. 2007, 6, 692–697.
- 64F.-R. Fan, D.-Y. Liu, Y.-F. Wu, S. Duan, Z.-X. Xie, Z.-Y. Jiang, Z.-Q. Tian, J. Am. Chem. Soc. 2008, 130, 6949–6951.
- 65
- 65aL. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, Nature 2002, 420, 57–61;
- 65bB. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B 1997, 101, 9463–9475;
- 65cX. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos, J. Am. Chem. Soc. 1997, 119, 7019–7029;
- 65dJ. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, X. Peng, J. Am. Chem. Soc. 2003, 125, 12567–12575.
- 66
- 66aF. Caruso, Adv. Mater. 2001, 13, 11–22;
- 66bY. J. Wong, L. Zhu, W. S. Teo, Y. W. Tan, Y. Yang, C. Wang, H. Chen, J. Am. Chem. Soc. 2011, 133, 11422–11425;
- 66cC. Xue, X. Chen, S. J. Hurst, C. A. Mirkin, Adv. Mater. 2007, 19, 4071–4074.
- 67
- 67aY. Kang, T. A. Taton, Macromolecules 2005, 38, 6115–6121;
- 67bY. Kang, T. A. Taton, Angew. Chem. 2005, 117, 413–416; Angew. Chem. Int. Ed. 2005, 44, 409–412;
- 67cH. Y. Chen, S. Abraham, J. Mendenhall, S. C. Delamarre, K. Smith, I. Kim, C. A. Batt, ChemPhysChem 2008, 9, 388–392.
- 68S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R. N. Muller, Chem. Rev. 2008, 108, 2064–2110.
- 69T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A. L. Rogach, S. Keller, J. Radler, G. Natile, W. J. Parak, Nano Lett. 2004, 4, 703–707.
- 70
- 70aA. Walther, A. H. E. Müller, Chem. Rev. 2013, 113, 5194–5261;
- 70bJ. Du, R. K. O′Reilly, Chem. Soc. Rev. 2011, 40, 2402–2416.
- 71Y. Feng, J. He, H. Wang, Y. Y. Tay, H. Sun, L. Zhu, H. Chen, J. Am. Chem. Soc. 2012, 134, 2004–2007.
- 72L. Zhang, A. Eisenberg, J. Am. Chem. Soc. 1996, 118, 3168–3181.
- 73B.-S. Kim, J.-M. Qiu, J.-P. Wang, T. A. Taton, Nano Lett. 2005, 5, 1987–1991.
- 74
- 74aY. Jin, X. Gao, J. Am. Chem. Soc. 2009, 131, 17774–17776;
- 74bS. H. Hu, X. Gao, J. Am. Chem. Soc. 2010, 132, 7234–7237;
- 74cY. Jin, X. Gao, Nat. Nanotechnol. 2009, 4, 571–576.
- 75
- 75aR. Bardhan, N. K. Grady, T. Ali, N. J. Halas, ACS Nano 2010, 4, 6169–6179;
- 75bT. Pham, J. B. Jackson, N. J. Halas, T. R. Lee, Langmuir 2002, 18, 4915–4920;
- 75cR. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, N. J. Halas, J. Phys. Chem. C 2009, 114, 7378–7383;
- 75dQ. Zhang, J. Ge, J. Goebl, Y. Hu, Y. Sun, Y. Yin, Adv. Mater. 2010, 22, 1905–1909;
- 75eH. Wang, D. W. Brandl, P. Nordlander, N. J. Halas, Acc. Chem. Res. 2006, 40, 53–62;
- 75fC. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. J. Halas, J. West, R. Drezek, Technol. Cancer Res. Treat. 2004, 3, 33–40.
- 76H. Zhang, Y. J. Li, I. A. Ivanov, Y. Q. Qu, Y. Huang, X. F. Duan, Angew. Chem. 2010, 122, 2927–2930; Angew. Chem. Int. Ed. 2010, 49, 2865–2868.
- 77
- 77aB. Lim, H. Kobayashi, T. Yu, J. G. Wang, M. J. Kim, Z. Y. Li, M. Rycenga, Y. N. Xia, J. Am. Chem. Soc. 2010, 132, 2506;
- 77bJ. Zeng, C. Zhu, J. Tao, M. S. Jin, H. Zhang, Z. Y. Li, Y. M. Zhu, Y. N. Xia, Angew. Chem. 2012, 124, 2404–2408; Angew. Chem. Int. Ed. 2012, 51, 2354–2358;
- 77cC. Zhu, J. Zeng, J. Tao, M. C. Johnson, I. Schmidt-Krey, L. Blubaugh, Y. M. Zhu, Z. Z. Gu, Y. N. Xia, J. Am. Chem. Soc. 2012, 134, 15822–15831;
- 77dX. H. Xia, Y. N. Xia, Nano Lett. 2012, 12, 6038–6042.
- 78
- 78aM. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, C. A. Mirkin, Chem. Rev. 2011, 111, 3736–3827;
- 78bC. R. Martin, Chem. Mater. 1996, 8, 1739–1746.
- 79
- 79aJ. Sarkar, G. G. Khan, A. Basumallick, Bull. Mater. Sci. 2007, 30, 271–290;
- 79bG. Z. Cao, D. W. Liu, Adv. Colloid Interface Sci. 2008, 136, 45–64.
- 80B. Nikoobakht, M. A. El-Sayed, Langmuir 2001, 17, 6368–6374.
- 81C. Wang, Y. Hu, C. M. Lieber, S. Sun, J. Am. Chem. Soc. 2008, 130, 8902–8903.
- 82Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, S. Emelianov, Nano Lett. 2011, 11, 348–354.
- 83M. Yang, T. Chen, W. S. Lau, Y. Wang, Q. Tang, Y. Yang, H. Chen, Small 2009, 5, 198–202.
- 84Q. S. Wei, J. Ji, J. C. Shen, Macromol. Rapid Commun. 2008, 29, 645–650.
- 85Q. Li, R. Jiang, T. Ming, C. Fang, J. Wang, Nanoscale 2012, 4, 7070–7077.
- 86T. Chen, M. Yang, X. Wang, L. H. Tan, H. Chen, J. Am. Chem. Soc. 2008, 130, 11858–11859.
- 87
- 87aJ. Xu, Y. Wang, X. Qi, C. Liu, J. He, H. Zhang, H. Chen, Angew. Chem. 2013, 125, 6135–6139; Angew. Chem. Int. Ed. 2013, 52, 6019–6023;
- 87bT. W. Hansen, A. T. Delariva, S. R. Challa, A. K. Datye, Acc. Chem. Res. 2013, 46, 1720–1730.
- 88
- 88aL. Meli, P. F. Green, Acs Nano 2008, 2, 1305–1312;
- 88bM. T. Swihart, Curr. Opin. Colloid Interface Sci. 2003, 8, 127–133;
- 88cM. A. Asoro, D. Kovar, Y. Shao-Horn, L. F. Allard, P. J. Ferreira, Nanotechnology 2010, 21, 025701.
- 89
- 89aM. Xiao, G. Xia, R. Wang, D. Xie, Soft Matter 2012, 8, 7865–7874;
- 89bM. Li, H. Schnablegger, S. Mann, Nature 1999, 402, 393–395;
- 89cH. Wang, Y.-T. Liu, H.-J. Qian, Z.-Y. Lu, Polymer 2011, 52, 2094–2101;
- 89dM. Grzelczak, J. Vermant, E. M. Furst, L. M. Liz-Marzan, ACS Nano 2010, 4, 3591–3605.
- 90Z. Lu, Y. Yin, Chem. Soc. Rev. 2012, 41, 6874–6887.
- 91H. Wang, L. Chen, X. Shen, L. Zhu, J. He, H. Chen, Angew. Chem. 2012, 124, 8145–8149; Angew. Chem. Int. Ed. 2012, 51, 8021–8025.
- 92
- 92aK. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, E. Kumacheva, Science 2010, 329, 197–200;
- 92bX. Wang, G. Li, T. Chen, M. Yang, Z. Zhang, T. Wu, H. Chen, Nano Lett. 2008, 8, 2643–2647.
- 93
- 93aM. Yang, G. Chen, Y. Zhao, G. Silber, Y. Wang, S. Xing, Y. Han, H. Chen, Phys. Chem. Chem. Phys. 2010, 12, 11850–11860;
- 93bB. Derjaguin, Kolloid-Z. 1934, 69, 155–164.
- 94Z. Nie, D. Fava, E. Kumacheva, S. Zou, G. C. Walker, M. Rubinstein, Nat. Mater. 2007, 6, 609–614.
- 95Y. Wang, G. Chen, M. Yang, G. Silber, S. Xing, L. H. Tan, F. Wang, Y. Feng, X. Liu, S. Li, H. Chen, Nat. Commun. 2010, 1, 87.
- 96
- 96aL. Zhang, A. Eisenberg, Science 1995, 268, 1728–1731;
- 96bL. Zhang, K. Yu, A. Eisenberg, Science 1996, 272, 1777–1779;
- 96cL. Zhang, A. Eisenberg, Macromolecules 1996, 29, 8805–8815.
- 97
- 97aC. Lin, Y. Liu, S. Rinker, H. Yan, ChemPhysChem 2006, 7, 1641–1647;
- 97bY. Ofir, B. Samanta, V. M. Rotello, Chem. Soc. Rev. 2008, 37, 1814–1825;
- 97cS. J. Tan, M. J. Campolongo, D. Luo, W. Cheng, Nat. Nanotechnol. 2011, 6, 268–276;
- 97dS. Sotiropoulou, Y. Sierra-Sastre, S. S. Mark, C. A. Batt, Chem. Mater. 2008, 20, 821–834.
- 98Y. Huang, C.-Y. Chiang, S. K. Lee, Y. Gao, E. L. Hu, J. D. Yoreo, A. M. Belcher, Nano Lett. 2005, 5, 1429–1434.
- 99
- 99aS. A. Davis, M. Breulmann, K. H. Rhodes, B. Zhang, S. Mann, Chem. Mater. 2001, 13, 3218–3226;
- 99bY. Ofir, B. Samanta, V. M. Rotello, Chem. Soc. Rev. 2008, 37, 1814–1823;
- 99cS. I. Lim, C. J. Zhong, Acc. Chem. Res. 2009, 42, 798–808;
- 99dY. Y. Mai, A. Eisenberg, Acc. Chem. Res. 2012, 45, 1657–1666.
- 100
- 100aC. B. Murray, C. R. Kagan, M. G. Bawendi, Science 1995, 270, 1335–1338;
- 100bC. J. Kiely, J. Fink, M. Brust, D. Bethell, D. J. Schiffrin, Nature 1998, 396, 444–446;
- 100cC. P. Collier, T. Vossmeyer, J. R. Heath, Annu. Rev. Phys. Chem. 1998, 49, 371–404;
- 100dM. P. Pileni, J. Phys. Chem. B 2001, 105, 3358–3371;
- 100eZ. L. Wang, Adv. Mater. 1998, 10, 13–30.
- 101
- 101aA. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, N. J. Halas, Nano Lett. 2013, 13, 4399–4403;
- 101bA. Sánchez-Iglesias, M. Grzelczak, T. Altantzis, B. Goris, J. Pérez-Juste, S. Bals, G. Van Tendeloo, S. H. Donaldson, B. F. Chmelka, J. N. Israelachvili, L. M. Liz-Marzán, ACS Nano 2012, 6, 11059–11065.
- 102
- 102aD. J. Wales, H. A. Scheraga, Science 1999, 285, 1368–1372;
- 102bR. S. Berry, Chem. Rev. 1993, 93, 2379–2394;
- 102cD. J. Wales, J. P. K. Doye, M. A. Miller, P. N. Mortenson, T. R. Walsh, Advances in Chemical Physics, Vol. 115 (Eds.: ), Wiley, New York, 2000, pp. 1–111.
10.1002/9780470141748.ch1 Google Scholar
- 103
- 103aZ. Zhuang, Q. Peng, B. Zhang, Y. Li, J. Am. Chem. Soc. 2008, 130, 10482–10483;
- 103bP. Li, Q. Peng, Y. Li, Chem. Eur. J. 2011, 17, 941–946;
- 103cZ. Huo, C. Chen, X. Liu, D. Chu, H. Li, Q. Peng, Y. Li, Chem. Commun. 2008, 3741–3743;
- 103dF. Bai, D. Wang, Z. Huo, W. Chen, L. Liu, X. Liang, C. Chen, X. Wang, Q. Peng, Y. Li, Angew. Chem. 2007, 119, 6770–6773; Angew. Chem. Int. Ed. 2007, 46, 6650–6653;
- 103eY. Nagaoka, O. Chen, Z. Wang, Y. C. Cao, J. Am. Chem. Soc. 2012, 134, 2868–2871;
- 103fJ. Zhuang, H. Wu, Y. Yang, Y. C. Cao, J. Am. Chem. Soc. 2007, 129, 14166–14167.
- 104
- 104aZ. Quan, J. Fang, Nano Today 2010, 5, 390–411;
- 104bT. Wang, J. Zhuang, J. Lynch, O. Chen, Z. Wang, X. Wang, D. LaMontagne, H. Wu, Z. Wang, Y. C. Cao, Science 2012, 338, 358–363;
- 104cM. R. Jones, R. J. Macfarlane, B. Lee, J. A. Zhang, K. L. Young, A. J. Senesi, C. A. Mirkin, Nat. Mater. 2010, 9, 913–917.
- 105
- 105aA. M. Kalsin, M. Fialkowski, M. Paszewski, S. K. Smoukov, K. J. M. Bishop, B. A. Grzybowski, Science 2006, 312, 420–424;
- 105bE. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O’Brien, C. B. Murray, Nature 2006, 439, 55–59;
- 105cA. E. Saunders, B. A. Korgel, ChemPhysChem 2005, 6, 61–65.
- 106
- 106aE. Auyeung, J. I. Cutler, R. J. Macfarlane, M. R. Jones, J. Wu, G. Liu, K. Zhang, K. D. Osberg, C. A. Mirkin, Nat. Nanotechnol. 2012, 7, 24–28;
- 106bC. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, Nature 1996, 382, 607–609;
- 106cE. Auyeung, T. Li, A. J. Senesi, A. L. Schmucker, B. C. Pals, M. O. de La Cruz, C. A. Mirkin, Nature 2014, 505, 73–77;
- 106dD. Nykypanchuk, M. M. Maye, D. van der Lelie, O. Gang, Nature 2008, 451, 549–552;
- 106eR. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, C. A. Mirkin, Science 2011, 334, 204–208.
- 107
- 107aL. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, G. A. Ozin, J. Phys. Chem. B 2005, 110, 671–673;
- 107bZ. A. Peng, X. Peng, J. Am. Chem. Soc. 2002, 124, 3343–3353;
- 107cB. Abécassis, F. Testard, O. Spalla, Phys. Rev. Lett. 2008, 100, 115504.
- 108Y. S. Xia, T. D. Nguyen, M. Yang, B. Lee, A. Santos, P. Podsiadlo, Z. Y. Tang, S. C. Glotzer, N. A. Kotov, Nat. Nanotechnol. 2011, 6, 580–587.
- 109
- 109aZ. Tang, N. A. Kotov, Adv. Mater. 2005, 17, 951–962;
- 109bT. Hu, Y. Gao, Z. L. Wang, Z. Y. Tang, Front. Phys. China 2009, 4, 487–496.
- 110
- 110aK. K. Caswell, J. N. Wilson, U. H. F. Bunz, C. J. Murphy, J. Am. Chem. Soc. 2003, 125, 13914–13915;
- 110bZ. Sun, W. Ni, Z. Yang, X. Kou, L. Li, J. Wang, Small 2008, 4, 1287–1292;
- 110cS. Zhang, X. Kou, Z. Yang, Q. Shi, G. D. Stucky, L. Sun, J. Wang, C. Yan, Chem. Commun. 2007, 1816–1818;
- 110dT. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, H. Chen, ACS Nano 2010, 4, 3087–3094;
- 110eN. Zhao, K. Liu, J. Greener, Z. Nie, E. Kumacheva, Nano Lett. 2009, 9, 3077–3081.
- 111
- 111aK. Nakata, Y. Hu, O. Uzun, O. Bakr, F. Stellacci, Adv. Mater. 2008, 20, 4294–4299;
- 111bG. A. DeVries, M. Brunnbauer, Y. Hu, A. M. Jackson, B. Long, B. T. Neltner, O. Uzun, B. H. Wunsch, F. Stellacci, Science 2007, 315, 358–361.
- 112B. Y. Kim, I.-B. Shim, O. L. A. Monti, J. Pyun, Chem. Commun. 2011, 47, 890–892.
- 113
- 113aZ. Tang, N. A. Kotov, M. Giersig, Science 2002, 297, 237–240;
- 113bM. Li, S. Johnson, H. Guo, E. Dujardin, S. Mann, Adv. Funct. Mater. 2011, 21, 851–859.
- 114M. Shim, P. Guyot-Sionnest, J. Chem. Phys. 1999, 111, 6955–6964.
- 115
- 115aH. Xia, G. Su, D. Wang, Angew. Chem. 2013, 125, 3814–3818; Angew. Chem. Int. Ed. 2013, 52, 3726–3730;
- 115bH. Zhang, D. Wang, Angew. Chem. 2008, 120, 4048–4051; Angew. Chem. Int. Ed. 2008, 47, 3984–3987.
- 116G. Gompper, M. Schick, Soft Matter, Wiley-VCH, Weinheim, 2007, pp. 1–16.
10.1002/9783527682300 Google Scholar
- 117
- 117aY. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969–5985;
- 117bC. Cai, Y. Li, J. Lin, L. Wang, S. Lin, X.-S. Wang, T. Jiang, Angew. Chem. 2013, 125, 7886–7890; Angew. Chem. Int. Ed. 2013, 52, 7732–7736.
- 118L. Zhang, H. Shen, A. Eisenberg, Macromolecules 1997, 30, 1001–1011.
- 119
- 119aC. Stoffelen, J. Voskuhl, P. Jonkheijm, J. Huskens, Angew. Chem. 2014, 126, 3468–3472;
10.1002/ange.201310829 Google ScholarAngew. Chem. Int. Ed. 2014, 53, 3400–3404;
- 119bH. Wang, S. Wang, H. Su, K.-J. Chen, A. L. Armijo, W.-Y. Lin, Y. Wang, J. Sun, K.-i. Kamei, J. Czernin, C. G. Radu, H.-R. Tseng, Angew. Chem. 2009, 121, 4408–4412; Angew. Chem. Int. Ed. 2009, 48, 4344–4348;
- 119cC. Stoffelen, J. Huskens, Chem. Commun. 2013, 49, 6740–6742.
- 120D. E. Discher, A. Eisenberg, Science 2002, 297, 967–973.
- 121
- 121aL. Chen, H. Shen, A. Eisenberg, J. Phys. Chem. B 1999, 103, 9488–9497;
- 121bS. E. Burke, A. Eisenberg, Langmuir 2001, 17, 6705–6714.
- 122L. Zhang, C. Bartels, Y. Yu, H. Shen, A. Eisenberg, Phys. Rev. Lett. 1997, 79, 5034–5037.
- 123
- 123aA. Blanazs, S. P. Armes, A. J. Ryan, Macromol. Rapid Commun. 2009, 30, 267–277;
- 123bM. Antonietti, S. Förster, Adv. Mater. 2003, 15, 1323–1333;
- 123cR. Nagarajan, Langmuir 2001, 18, 31–38.
- 124H. Shen, L. Zhang, A. Eisenberg, J. Am. Chem. Soc. 1999, 121, 2728–2740.
- 125D. J. Pochan, Z. Chen, H. Cui, K. Hales, K. Qi, K. L. Wooley, Science 2004, 306, 94–97.
- 126T. Azzam, A. Eisenberg, Angew. Chem. 2006, 118, 7603–7607;
10.1002/ange.200602897 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 7443–7447.
- 127
- 127aS. Garnier, A. Laschewsky, Colloid. Polym. Sci. 2006, 284, 1243–1254;
- 127bS. Jain, F. S. Bates, Science 2003, 300, 460–464.
- 128
- 128aP. Alexandridis, J. F. Holzwarth, T. A. Hatton, Macromolecules 1994, 27, 2414–2425;
- 128bG. Wanka, H. Hoffmann, W. Ulbricht, Macromolecules 1994, 27, 4145–4159.
- 129Z. Tuzar, P. Kratochvil, Adv. Colloid Interface Sci. 1976, 6, 201–232.
- 130
- 130aH. Jin, W. Huang, X. Zhu, Y. Zhou, D. Yan, Chem. Soc. Rev. 2012, 41, 5986–5997;
- 130bY. Zhou, W. Huang, J. Liu, X. Zhu, D. Yan, Adv. Mater. 2010, 22, 4567–4590;
- 130cY. Zhou, D. Yan, Chem. Commun. 2009, 1172–1188.
- 131O. Terreau, L. Luo, A. Eisenberg, Langmuir 2003, 19, 5601–5607.
- 132
- 132aA. Rank, S. Hauschild, S. Förster, R. Schubert, Langmuir 2009, 25, 1337–1344;
- 132bH. Tan, Z. Wang, J. Li, Z. Pan, M. Ding, Q. Fu, ACS Macro Lett. 2013, 2, 146–151;
- 132cY. Han, J. Cui, W. Jiang, J. Phys. Chem. B 2012, 116, 9208–9214;
- 132dJ. Cui, W. Jiang, Langmuir 2010, 26, 13672–13676;
- 132eP. He, X. Li, D. Kou, M. Deng, H. Liang, J. Chem. Phys. 2010, 132, 204905;
- 132fJ. Cui, W. Jiang, Langmuir 2011, 27, 10141–10147;
- 132gA. Blanazs, J. Madsen, G. Battaglia, A. J. Ryan, S. P. Armes, J. Am. Chem. Soc. 2011, 133, 16581–16587.
- 133H. Cui, Z. Chen, S. Zhong, K. L. Wooley, D. J. Pochan, Science 2007, 317, 647–650.
- 134J. Zhu, S. Zhang, K. Zhang, X. Wang, J. W. Mays, K. L. Wooley, D. J. Pochan, Nat. Commun. 2013, 4.
- 135
- 135aA. H. Groschel, A. Walther, T. I. Lobling, F. H. Schacher, H. Schmalz, A. H. E. Muller, Nature 2013, 503, 247–251;
- 135bR. C. Hayward, D. J. Pochan, Macromolecules 2010, 43, 3577–3584;
- 135cA. H. Gröschel, F. H. Schacher, H. Schmalz, O. V. Borisov, E. B. Zhulina, A. Walther, A. H. E. Müller, Nat. Commun. 2012, 3, 710;
- 135dJ. H. Zhu, S. Y. Zhang, F. W. Zhang, K. L. Wooley, D. J. Pochan, Adv. Funct. Mater. 2013, 23, 1767–1773.
- 136Y. Yu, L. Zhang, A. Eisenberg, Macromolecules 1998, 31, 1144–1154.