Copper-Catalyzed Trifluoromethylation-Initiated Radical 1,2-Aryl Migration in α,α-Diaryl Allylic Alcohols†
Xiaowu Liu
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530 (China)
Search for more papers by this authorFei Xiong
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530 (China)
Search for more papers by this authorXuanping Huang
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530 (China)
Search for more papers by this authorLiang Xu
Center for Organic Chemistry, Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Pengfei Li
Center for Organic Chemistry, Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 (China)
Pengfei Li, Center for Organic Chemistry, Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 (China)
Xiaoxing Wu, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaoxing Wu
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530 (China)
Pengfei Li, Center for Organic Chemistry, Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 (China)
Xiaoxing Wu, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530 (China)
Search for more papers by this authorXiaowu Liu
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530 (China)
Search for more papers by this authorFei Xiong
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530 (China)
Search for more papers by this authorXuanping Huang
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530 (China)
Search for more papers by this authorLiang Xu
Center for Organic Chemistry, Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Pengfei Li
Center for Organic Chemistry, Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 (China)
Pengfei Li, Center for Organic Chemistry, Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 (China)
Xiaoxing Wu, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaoxing Wu
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530 (China)
Pengfei Li, Center for Organic Chemistry, Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 (China)
Xiaoxing Wu, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530 (China)
Search for more papers by this authorWe are grateful for financial support of this work by a Start-up Grant from Guangzhou Institutes of Biomedicine and Health (GIBH), and by the National Science Foundation of China (grant numbers 21202168 and 21202129).
Graphical Abstract
Not only symmetrical, but also unsymmetrical α,α-diaryl allylic alcohols are employed as substrates in the title reaction. A number of arenes and even heteroarenes underwent radical 1,2-aryl migration (“neophyl rearrangement”) to produce α-aryl β-trifluoromethyl ketones. The preferential migration of electron-deficient aryl groups over electron-rich ones in unsymmetrical substrates supports the radical mechanism, which was further confirmed by DFT calculations.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201302673_sm_miscellaneous_information.pdf7.1 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881;
- 1bS. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320;
- 1cT. Yamazaki, T. Taguchi, I. Ojima in Fluorine in Medicinal Chemistry and Chemical Biology (Ed.: ), Wiley-Blackwell, Chichester, 2009, p. 3.
- 2For selected reviews, see:
- 2aT. Umemoto, Chem. Rev. 1996, 96, 1757;
- 2bG. K. S. Prakash, A. K. Yudin, Chem. Rev. 1997, 97, 757;
- 2cM. Shimizu, T. Hiyama, Angew. Chem. 2005, 117, 218; Angew. Chem. Int. Ed. 2005, 44, 214;
- 2dM. Schlosser, Angew. Chem. 2006, 118, 5558;
10.1002/ange.200600449 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 5432;
- 2eJ.-A. Ma, D. Cahard, Chem. Rev. 2008, 108, PR 1;
- 2fO. A. Tomashenko, V. V. Grushin, Chem. Rev. 2011, 111, 4475;
- 2gT. Furuya, A. S. Kamlet, T. Ritter, Nature 2011, 473, 470;
- 2hT. Besset, C. Schneider, D. Cahard, Angew. Chem. 2012, 124, 5134;
10.1002/ange.201201012 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 5048;
- 2iT. Liu, Q. Shen, Eur. J. Org. Chem. 2012, 6679.
- 3For selected reports on (hetero)arylCF3 bond formation, see:
- 3aM. Oishi, H. Kondo, H. Amii, Chem. Commun. 2009, 1909;
- 3bX. Wang, L. Truesdale, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132, 3648;
- 3cY. Ye, N. D. Ball, J. W. Kampf, M. S. Sanford, J. Am. Chem. Soc. 2010, 132, 14682;
- 3dE. J. Cho, T. D. Senecal, T. Kinzel, Y. Zhang, D. A. Watson, S. L. Buchwald, Science 2010, 328, 1679;
- 3eL. Chu, F.-L. Qing, Org. Lett. 2010, 12, 5060;
- 3fT. Knauber, F. Arikan, G.-V. Röschenthaler, L. J. Gooßen, Chem. Eur. J. 2011, 17, 2689;
- 3gJ. Xu, D.-F. Luo, B. Xiao, Z.-J. Liu, T.-J. Gong, Y. Fu, L. Liu, Chem. Commun. 2011, 47, 4300;
- 3hT. Liu, Q. Shen, Org. Lett. 2011, 13, 2342;
- 3iX. Mu, S. Chen, X. Zhen, G. Liu, Chem. Eur. J. 2011, 17, 6039;
- 3jD. A. Nagib, D. W. C. MacMillan, Nature 2011, 480, 224;
- 3kY. Ye, S. H. Lee, M. S. Sanford, Org. Lett. 2011, 13, 5464;
- 3lY. Ji, T. Brueckl, R. D. Baxter, Y. Fujiwara, I. B. Seiple, S. Su, D. G. Blackmond, P. S. Baran, Proc. Natl. Acad. Sci. USA 2011, 108, 14411;
- 3mO. A. Tomashenko, E. C. Escudero-Adán, M. M. Belmonte, V. V. Grushin, Angew. Chem. 2011, 123, 7797;
10.1002/ange.201101577 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 7655;
- 3nH. Morimoto, T. Tsubogo, N. D. Litvinas, J. F. Hartwig, Angew. Chem. 2011, 123, 3877;
10.1002/ange.201100633 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 3793;
- 3oC.-P. Zhang, Z.-L. Wang, Q.-Y. Chen, C.-T. Zhang, Y.-C. Gu, J.-C. Xiao, Angew. Chem. 2011, 123, 1936; Angew. Chem. Int. Ed. 2011, 50, 1896;
- 3pC.-P. Zhang, J. Cai, C.-B. Zhou, X.-P. Wang, X. Zheng, Y.-C. Gu, J.-C. Xiao, Chem. Commun. 2011, 47, 9516;
- 3qT. D. Senecal, A. T. Parsons, S. L. Buchwald, J. Org. Chem. 2011, 76, 1174;
- 3rB. A. Khan, A. E. Buba, L. J. Gooßen, Chem. Eur. J. 2012, 18, 1577;
- 3sP. Novák, A. Lishchynskyi, V. V. Grushin, Angew. Chem. 2012, 124, 7887; Angew. Chem. Int. Ed. 2012, 51, 7767;
- 3tN. D. Litvinas, P. S. Fier, J. F. Hartwig, Angew. Chem. 2012, 124, 551;
10.1002/ange.201106668 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 536;
- 3uT. Liu, X. Shao, Y. Wu, Q. Shen, Angew. Chem. 2012, 124, 555; Angew. Chem. Int. Ed. 2012, 51, 540;
- 3vA. Hafner, S. Bräse, Angew. Chem. 2012, 124, 3773;
10.1002/ange.201107414 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 3713;
- 3wE. Mejía, A. Togni, ACS Catal. 2012, 2, 521;
- 3xX.-G. Zhang, H.-X. Dai, M. Wasa, J.-Q. Yu, J. Am. Chem. Soc. 2012, 134, 11948;
- 3yL. Chu, F.-L. Qing, J. Am. Chem. Soc. 2012, 134, 1298;
- 3zY. Ye, M. S. Sanford, J. Am. Chem. Soc. 2012, 134, 9034;
- 3aaY. Ye, S. A. Künzi, M. S. Sanford, Org. Lett. 2012, 14, 4979;
- 3abL.-S. Zhang, K. Chen, G. Chen, B.-J. Li, S. Luo, Q.-Y. Guo, J.-B. Wei, Z.-J. Shi, Org. Lett. 2013, 15, 10.
- 4For Cu-catalyzed trifluoromethylation of unactivated alkenes, see:
- 4aA. T. Parsons, S. L. Buchwald, Angew. Chem. 2011, 123, 9286; Angew. Chem. Int. Ed. 2011, 50, 9120;
- 4bJ. Xu, Y. Fu, D.-F. Luo, Y.-Y. Jiang, B. Xiao, Z.-J. Liu, T.-J. Gong, L. Liu, J. Am. Chem. Soc. 2011, 133, 15300;
- 4cX. Wang, Y. Ye, S. Zhang, J. Feng, Y. Xu, Y. Zhang, J. Wang, J. Am. Chem. Soc. 2011, 133, 16410.
- 5For Cu-catalyzed trifluoromethylation of allylsilanes, see:
- 5aR. Shimizu, H. Egami, Y. Hamashima, M. Sodeoka, Angew. Chem. 2012, 124, 4655; Angew. Chem. Int. Ed. 2012, 51, 4577;
- 5bS. Mizuta, O. Galicia-López, K. M. Engle, S. Verhoog, K. Wheelhouse, G. Rassias, V. Gouverneur, Chem. Eur. J. 2012, 18, 8583.
- 6For Fe-catalyzed trifluoromethylation of potassium vinyltrifluoroborates, see: A. T. Parsons, T. D. Senecal, S. L. Buchwald, Angew. Chem. 2012, 124, 3001; Angew. Chem. Int. Ed. 2012, 51, 2947.
- 7For Cu-catalyzed trifluoromethylation of enamides, see: C. Feng, T.-P. Loh, Chem. Sci. 2012, 3, 3458.
- 8For transition-metal-catalyzed oxytrifluoromethylation of alkenes or alkynes, see:
- 8aY. Yasu, T. Koike, M. Akita, Angew. Chem. 2012, 124, 9705;
10.1002/ange.201205071 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 9567;
- 8bR. Zhu, S. L. Buchwald, J. Am. Chem. Soc. 2012, 134, 12462;
- 8cP. G. Janson, I. Ghoneim, N. O. IIchenko, K. J. Szabó, Org. Lett. 2012, 14, 2882;
- 8dH. Egami, R. Shimizu, M. Sodeoka, Tetrahedron Lett. 2012, 53, 5503; for transition-metal-free oxytrifluoromethylation of alkenes, see:
- 8eY. Li, A. Studer, Angew. Chem. 2012, 124, 8345; Angew. Chem. Int. Ed. 2012, 51, 8221;
- 8fC.-P. Zhang, Z.-L. Wang, Q.-Y. Chen, C.-T. Zhang, Y.-C. Gu, J.-C. Xiao, Chem. Commun. 2011, 47, 6632.
- 9For carbotrifluoromethylation of unactivated alkenes, see: H. Egami, R. Shimizu, S. Kawamura, M. Sodeoka, Angew. Chem. 2013, 125, 4092;
10.1002/ange.201210250 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 4000.
- 10For hydrotrifluoromethylation of unactivated alkenes, see: S. Mizuta, S. Verhoog, K. M. Engle, T. Khotavivattana, M. O’Duill, K. Wheelhouse, G. Rassias, M. Médebielle, V. Gouverneur, J. Am. Chem. Soc. 2013, 135, 2505.
- 11
- 11aP. Eisenberger, S. Gischig, A. Togni, Chem. Eur. J. 2006, 12, 2579;
- 11bI. Kieltsch, P. Eisenberger, A. Togni, Angew. Chem. 2007, 119, 768;
10.1002/ange.200603497 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 754.
- 12For selectivity of semipinacol rearrangement, see: L. Li, P. Cai, Q. Guo, S. Xue, J. Org. Chem. 2008, 73, 3516.
- 13For selectivity of the “neophyl rearrangement”, see:
- 13aR. Christoph, H. Roland, Chem. Ber. 1965, 98, 2471;
- 13bC. S. Aureliano Antunes, M. Bietti, G. Ercolani, O. Lanzalunga, M. Salamone, J. Org. Chem. 2005, 70, 3884.
- 14For reviews of aromatic CC ipso-substitution reactions, see:
- 14aA. Studer, M. Bossart, Tetrahedron 2001, 57, 9649;
- 14bS. M. Bonesi, M. Fagnoni, Chem. Eur. J. 2010, 16, 13572; for selected examples of aromatic CC ipso-substitution reactions, see:
- 14cH. Amii, S. Kondo, K. Uneyama, Chem. Commun. 1998, 1845;
- 14dH. Senboku, H. Hasegawa, K. Orito, M. Tokuda, Tetrahedron Lett. 2000, 41, 5699;
- 14eD. C. Harrowven, N. L’Helias, J. D. Moseley, N. J. Blumire, S. D. Flanagan, Chem. Commun. 2003, 2658.
- 15
- 15aR. P. Singh, R. L. Kirchmeier, J. M. Shreeve, Org. Lett. 1999, 1, 1047;
- 15bR. P. Singh, J. M. Shreeve, Tetrahedron 2000, 56, 7613;
- 15cS. Large, N. Roques, B. R. Langlois, J. Org. Chem. 2000, 65, 8848;
- 15dT. Billard, S. Bruns, B. R. Langlois, Org. Lett. 2000, 2, 2101;
- 15eS. Mizuta, N. Shibata, T. Sato, H. Fujimoto, S. Nakamura, T. Toru, Synlett 2006, 267.
- 16
- 16aD. V. Sevenard, V. Y. Sosnovskikh, A. A. Kolomeitsev, M. H. Königsmann, G.-V. Röschenthaler, Tetrahedron Lett. 2003, 44, 7623;
- 16bV. Y. Sosnovskikh, B. I. Usachev, D. V. Sevenard, G.-V. Röschenthaler, J. Org. Chem. 2003, 68, 7747;
- 16cC.-L. Wang, H.-Q. Li, W.-D. Meng, F.-L. Qing, Bioorg. Med. Chem. Lett. 2005, 15, 4456.
- 17K. Sato, M. Omote, A. Ando, I. Kumadaki, Org. Lett. 2004, 6, 4359.
- 18For recent selected examples on C(sp3)CF3 bond formation, see:
- 18aP. Novák, A. Lishchynskyi, V. V. Grushin, J. Am. Chem. Soc. 2012, 134, 16167;
- 18bM. Hu, C. Ni, J. Hu, J. Am. Chem. Soc. 2012, 134, 15257;
- 18cT. S. N. Zhao, K. J. Szabó, Org. Lett. 2012, 14, 3966;
- 18dH. Kawai, T. Furukawa, Y. Nomura, E. Tokunaga, N. Shibata, Org. Lett. 2012, 14, 3596;
- 18eJ. Xu, B. Xiao, C.-Q. Xie, D.-F. Luo, L. Liu, Y. Fu, Angew. Chem. 2012, 124, 12719; Angew. Chem. Int. Ed. 2012, 51, 12551;
- 18fY. Miyake, S.-i. Ota, Y. Nishibayashi, Chem. Eur. J. 2012, 18, 13255;
- 18gG. K. S. Prakash, P. V. Jog, P. T. D. Batamack, G. A. Olah, Science 2012, 338, 1324;
- 18hA. T. Herrmann, L. L. Smith, A. Zakarian, J. Am. Chem. Soc. 2012, 134, 6976;
- 18iC.-B. Liu, W. Meng, F. Li, S. Wang, J. Nie, J.-A. Ma, Angew. Chem. 2012, 124, 6331; Angew. Chem. Int. Ed. 2012, 51, 6227;
- 18jQ.-H. Deng, H. Wadepohl, L. H. Gade, J. Am. Chem. Soc. 2012, 134, 10769;
- 18kX. Mu, T. Wu, H.-Y. Wang, Y.-L. Guo, G. Liu, J. Am. Chem. Soc. 2012, 134, 878;
- 18lP. V. Pham, D. A. Nagib, D. W. C. MacMillan, Angew. Chem. 2012, 124, 6243; Angew. Chem. Int. Ed. 2011, 50, 6119;
- 18mA. E. Allen, D. W. C. MacMillan, J. Am. Chem. Soc. 2010, 132, 4986;
- 18nD. A. Nagib, M. E. Scott, D. W. C. MacMillan, J. Am. Chem. Soc. 2009, 131, 10875.
- 19During preparation of this manuscript, Xu described a diastereoselective hydroxytrifluoromethylation of dienes and proposed a CF3 radical in the process: D.-F. Lu, C.-L. Zhu, H. Xu, Chem. Sci. 2013, 4, 2478.
- 20E. Ciganek, J. Org. Chem. 1995, 60, 4439.
- 21V. Lubczyk, H. Bachmann, R. Gust, J. Med. Chem. 2002, 45, 5358.