A Tetrapositive Metal Ion in the Gas Phase: Thorium(IV) Coordinated by Neutral Tridentate Ligands†
Dr. Yu Gong
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)
Search for more papers by this authorDr. Han-Shi Hu
Department of Chemistry & Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University (China)
Search for more papers by this authorDr. Guoxin Tian
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)
Search for more papers by this authorDr. Linfeng Rao
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. Jun Li
Department of Chemistry & Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University (China)
William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (USA)
Jun Li, Department of Chemistry & Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University (China)
John K. Gibson, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)
Search for more papers by this authorCorresponding Author
Dr. John K. Gibson
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)
Jun Li, Department of Chemistry & Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University (China)
John K. Gibson, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)
Search for more papers by this authorDr. Yu Gong
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)
Search for more papers by this authorDr. Han-Shi Hu
Department of Chemistry & Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University (China)
Search for more papers by this authorDr. Guoxin Tian
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)
Search for more papers by this authorDr. Linfeng Rao
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. Jun Li
Department of Chemistry & Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University (China)
William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (USA)
Jun Li, Department of Chemistry & Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University (China)
John K. Gibson, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)
Search for more papers by this authorCorresponding Author
Dr. John K. Gibson
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)
Jun Li, Department of Chemistry & Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University (China)
John K. Gibson, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)
Search for more papers by this authorThis work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry, at LBNL under Contract No. DE-AC02-05CH11231 (Y.G., G.T., L.R., J.K.G.) and at PNNL under Contract No. DE-AC05-76RL01830 (J.L.). The theoretical work by H.S.H. and J.L. was also supported by NSFC (20933003 and 91026003) of China. The calculations were done using Tsinghua National Laboratory for Information Science and Technology and the Molecular Science Computing capability at the EMSL, a National scientific user facility located at the PNNL, operated for the Department of Energy by Battelle.
Graphical Abstract
Sheltering thorium ions: A Th4+ ion supported by three neutral tetramethyl-3-oxaglutaramide ligands (L=TMOGA) is produced in the gas phase by electrospray ionization (see graph). The thorium in chiral Th(L)34+ is coordinated by nine oxygen atoms (see picture; O red, N blue, C gray). Quantum chemical studies revealed a decrease in ThO binding energies and bond orders and an increase in bond lengths, as the number of coordinating ligands increases.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201302212_sm_miscellaneous_information.pdf543.3 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. D. Price, J. Roithovà, Phys. Chem. Chem. Phys. 2011, 13, 18251–18252.
- 2D. Schröder, H. Schwarz, J. Phys. Chem. A 1999, 103, 7385–7394.
- 3D. Schröder, Angew. Chem. 2004, 116, 1351–1353; Angew. Chem. Int. Ed. 2004, 43, 1329–1331.
- 4
- 4aM. K. Beyer, Mass Spectrom. Rev. 2007, 26, 517–541;
- 4bI. Corral, M. Yáñez, Phys. Chem. Chem. Phys. 2011, 13, 14848–14864;
- 4cN. R. Walker, G. A. Grieves, J. B. Jaeger, R. S. Walters, M. A. Duncan, Int. J. Mass Spectrom. 2003, 228, 285–295.
- 5J. Lachner, M. Christl, C. Vockenhuber, H. A. Synal, X. Cao-Dolg, M. Dolg, Phys. Rev. A 2012, 85, 022717.
- 6aD. Schröder, M. Diefenbach, T. M. Klapötke, H. Schwarz, Angew. Chem. 1999, 111, 206–209;
Angew. Chem. Int. Ed. 1999, 38, 137–140;
10.1002/(SICI)1521-3773(19990115)38:1/2<137::AID-ANIE137>3.0.CO;2-M CAS Web of Science® Google Scholar
- 6bD. Schröder, J. N. Harvey, H. Schwarz, J. Phys. Chem. A 1998, 102, 3639–3642.
- 7
- 7aV. Brites, K. Franzreb, J. N. Harvey, S. G. Sayres, M. W. Ross, D. E. Blumling, A. W. Castleman, Jr., M. Hochlaf, Phys. Chem. Chem. Phys. 2011, 13, 15233–15243;
- 7bE. W. Müller, S. V. Krishnaswamy, Phys. Rev. Lett. 1976, 37, 1011–1014;
- 7cE. W. Müller, S. V. Krishnaswamy, S. B. McLane, Surf. Sci. 1970, 23, 112–129.
- 8A. T. Blades, P. Jayaweera, M. G. Ikonomou, P. Kebarle, Int. J. Mass. Spectrom. Ion Processes 1990, 101, 325–336.
- 9
- 9aA. A. Shvartsburg, J. Am. Chem. Soc. 2002, 124, 12343–12351;
- 9bA. A. Shvartsburg, Chem. Phys. Lett. 2002, 360, 479–486.
- 10
- 10aN. R. Walker, A. J. Stace, C. A. Woodward, Int. J. Mass Spectrom. 1999, 188, 113–119;
- 10bL. Puskar, K. Tomlins, B. Duncombe, H. Cox, A. J. Stace, J. Am. Chem. Soc. 2005, 127, 7559–7569.
- 11
- 11aM. F. Bush, R. J. Saykally, E. R. Williams, J. Am. Chem. Soc. 2008, 130, 9122–9128;
- 11bM. F. Bush, R. J. Saykally, E. R. Williams, Int. J. Mass Spectrom. 2006, 253, 256–262.
- 12K. McQuinn, F. Hof, J. S. McIndoe, Chem. Commun. 2007, 4099–4101.
- 13A. A. Shvartsburg, J. Am. Chem. Soc. 2002, 124, 7910–7911.
- 14
- 14aA. A. Shvartsburg, R. C. Jones, J. Am. Soc. Mass Spectrom. 2004, 15, 406–408;
- 14bT. Kojima, I. Kudaka, T. Sato, T. Asakawa, R. Akiyama, Y. Kawashima, K. Hiraoka, Rapid Commun. Mass Spectrom. 1999, 13, 2090–2097.
10.1002/(SICI)1097-0231(19991115)13:21<2090::AID-RCM758>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 15
- 15aT. Shi, K. W. M. Siu, A. C. Hopkinson, J. Phys. Chem. A 2007, 111, 11562–11571;
- 15bT. Shi, A. C. Hopkinson, K. W. M. Siu, Chem. Eur. J. 2007, 13, 1142–1151.
- 16J. N. Harvey, M. Kaczorowska, Int. J. Mass Spectrom. 2003, 228, 517–526.
- 17
- 17aD. Rios, P. X. Rutkowski, M. J. Van Stipdonk, J. K. Gibson, Inorg. Chem. 2011, 50, 4781–4790;
- 17bP. X. Rutkowski, D. Rios, J. K. Gibson, M. J. Van Stipdonk, J. Am. Soc. Mass Spectrom. 2011, 22, 2042–2048;
- 17cD. Rios, P. X. Rutkowski, D. K. Shuh, T. H. Bray, J. K. Gibson, M. J. Van Stipdonk, J. Mass Spectrom. 2011, 46, 1247–1254.
- 18S. A. Ansari, P. Pathak, P. K. Mohapatra, V. K. Manchanda, Chem. Rev. 2012, 112, 1751–1772.
- 19
- 19aG. Tian, J. Xu, L. Rao, Angew. Chem. 2005, 117, 6356–6359; Angew. Chem. Int. Ed. 2005, 44, 6200–6203;
- 19bG. Tian, L. Rao, S. J. Teat, G. Liu, Chem. Eur. J. 2009, 15, 4172–4181.
- 20
- 20aS. Kannan, M. A. Moody, C. L. Barnes, P. B. Duval, Inorg. Chem. 2008, 47, 4691–4695;
- 20bK. Matloka, A. Gelis, M. Regalbuto, G. Vandegrift, M. J. Scott, Dalton Trans. 2005, 3719–3721;
- 20cY. Zhang, W. Liu, Y. Wang, N. Tang, M. Tan, K. Yu, J. Coord. Chem. 2002, 55, 1293–1299.
- 21S. D. Reilly, A. J. Gaunt, B. L. Scott, G. Modolo, M. Iqbal, W. Verboom, M. J. Sarsfieldd, Chem. Commun. 2012, 48, 9732–9734.
- 22 CRC Handbook of Chemistry and Physics (Ed.: ), CRC, Boca Raton, FL, 2009–2010.
- 23
- 23aP. X. Rutkowski, M. C. Michelini, J. K. Gibson, J. Phys. Chem. A 2013, 117, 451–459;
- 23bC. Walther, J. Rothe, B. Schimmelpfennig, M. Fuss, Dalton Trans. 2012, 41, 10941–10947.
- 24P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 186–197.
- 25J. Li, H. S. Hu, J. T. Lyon, L. Andrews, Angew. Chem. 2007, 119, 9203–9207; Angew. Chem. Int. Ed. 2007, 46, 9045–9049.
- 26R. Carr, N. H. Evans, D. Parker, Chem. Soc. Rev. 2012, 41, 7673–7686.
- 27Y. Sugo, Y. Sasaki, S. Tachimori, Radiochim. Acta 2002, 90, 161–165.
- 28
- 28aP. X. Rutkowski, M. C. Michelini, T. H. Bray, N. Russo, J. Marçalo, J. K. Gibson, Theor. Chem. Acc. 2011, 129, 575–592;
- 28bD. Rios, M. C. Michelini, A. F. Lucena, J. Marçalo, T. H. Bray, J. K. Gibson, Inorg. Chem. 2012, 51, 6603–6614.