Synthesis of Enantiopure Carbonaceous Nanotubes with Optical Activity†
Shaohua Liu
School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (P.R. China) http://che.sjtu.edu.cn
Search for more papers by this authorYingying Duan
School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (P.R. China) http://che.sjtu.edu.cn
Search for more papers by this authorXuejiao Feng
School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (P.R. China) http://che.sjtu.edu.cn
Search for more papers by this authorProf. Jun Yang
School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (P.R. China) http://che.sjtu.edu.cn
Search for more papers by this authorCorresponding Author
Prof. Shunai Che
School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (P.R. China) http://che.sjtu.edu.cn
School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (P.R. China) http://che.sjtu.edu.cnSearch for more papers by this authorShaohua Liu
School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (P.R. China) http://che.sjtu.edu.cn
Search for more papers by this authorYingying Duan
School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (P.R. China) http://che.sjtu.edu.cn
Search for more papers by this authorXuejiao Feng
School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (P.R. China) http://che.sjtu.edu.cn
Search for more papers by this authorProf. Jun Yang
School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (P.R. China) http://che.sjtu.edu.cn
Search for more papers by this authorCorresponding Author
Prof. Shunai Che
School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (P.R. China) http://che.sjtu.edu.cn
School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (P.R. China) http://che.sjtu.edu.cnSearch for more papers by this authorThis work was supported by the 973 project (2009CB930403) of China and Evonik Industry.
Graphical Abstract
In one step, self-assembled helical polypyrrole nanotubes were carbonized to enantiopure chiral carbonaceous nanotubes with a partially graphitized nanostructure (see picture). The ordered helical arrangement of the carbon nanostructure resulted in enantiomeric materials with distinct optical activity. Moreover, their unique structure endowed them with high reversible storage capacity of lithium ions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201301199_sm_miscellaneous_information.pdf1.1 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. E. Shopsowitz, H. Qi, W. Y. Hamad, M. J. MacLachlan, Nature 2010, 468, 422–425;
- 1bA. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hogele, F. C. Simmel, A. O. Govorov, T. Liedl, Nature 2012, 483, 311–314;
- 1cD. S. Su, Angew. Chem. 2011, 123, 4843–4847; Angew. Chem. Int. Ed. 2011, 50, 4747–4750;
- 1dK. E. Shopsowitz, A. Stahl, W. Y. Hamad, M. J. MacLachlan, Angew. Chem. 2012, 124, 6992–6996;
10.1002/ange.201201113 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 6886–6890;
- 1eC. Gautier, T. Bürgi, ChemPhysChem 2009, 10, 483–492;
- 1fA. O. Govorov, Y. K. Gun’ko, J. M. Slocik, V. A. Gerard, Z. Fan, R. R. Naik, J. Mater. Chem. 2011, 21, 16806–16818;
- 1gM. Yang, N. A. Kotov, J. Mater. Chem. 2011, 21, 6775.
- 2
- 2aL. Hu, D. S. Hecht, G. Grüner, Chem. Rev. 2010, 110, 5790–5884;
- 2bN. Karousis, N. Tagmatarchis, D. Tasis, Chem. Rev. 2010, 110, 5366–5397;
- 2cD. Chen, L. Tang, J. Li, Chem. Soc. Rev. 2010, 39, 3157–3180.
- 3L. Xing, J. H. Xie, Y. S. Chen, L. X. Wang, Q. L. Zhou, Adv. Synth. Catal. 2008, 350, 1013–1016.
- 4D. K. Smith, Chem. Soc. Rev. 2009, 38, 684–694.
- 5C. Girardet, D. Vardanega, F. Picaud, Chem. Phys. Lett. 2007, 443, 113–117.
- 6
- 6aX. Li, X. Tu, S. Zaric, K. Welsher, W. S. Seo, W. Zhao, H. Dai, J. Am. Chem. Soc. 2007, 129, 15770–15771;
- 6bB. Wang, C. H. P. Poa, L. Wei, L. J. Li, Y. Yang, Y. Chen, J. Am. Chem. Soc. 2007, 129, 9014–9019;
- 6cY. Chen, L. Wei, B. Wang, S. Lim, D. Ciuparu, M. Zheng, J. Chen, C. Zoican, Y. Yang, G. L. Haller, ACS Nano 2007, 1, 327–336.
- 7
- 7aG. Dukovic, M. Balaz, P. Doak, N. D. Berova, M. Zheng, R. S. Mclean, L. E. Brus, J. Am. Chem. Soc. 2006, 128, 9004–9005;
- 7bX. Peng, N. Komatsu, S. Bhattacharya, T. Shimawaki, S. Aonuma, T. Kimura, A. Osuka, Nat. Nanotechnol. 2007, 2, 361–365.
- 8
- 8aS. G. Telfer, N. Tajima, R. Kuroda, J. Am. Chem. Soc. 2004, 126, 1408–1418;
- 8bM. Kasha, Radiat. Res. 1963, 20, 55–70.
- 9C. Fan, H. Qiu, J. Ruan, O. Terasaki, Y. Yan, Z. Wei, S. Che, Adv. Funct. Mater. 2008, 18, 2699–2707.
- 10
- 10aT. Shimizu, M. Masuda, H. Minamikawa, Chem. Rev. 2005, 105, 1401–1444;
- 10bS. Liu, L. Han, Y. Duan, S. Asahina, O. Terasaki, Y. Cao, B. Liu, L. Ma, J. Zhang, S. Che, Nat. Commun. 2012, 3, 1215.
- 11
- 11aY. Ma, S. Jiang, G. Jian, H. Tao, L. Yu, X. Wang, X. Wang, J. Zhu, Z. Hu, Y. Chen, Energy Environ. Sci. 2009, 2, 224–229;
- 11bS. Shang, X. Yang, X. Tao, Polymer 2009, 50, 2815–2818.
- 12J. Casanovas, J. M. Ricart, J. Rubio, F. Illas, J. M. Jiménez-Mateos, J. Am. Chem. Soc. 1996, 118, 8071–8076.
- 13
- 13aA. Zamudio, A. L. Elías, J. A. Rodríguez-Manzo, F. López-Urías, G. Rodríguez-Gattorno, F. Lupo, M. Rühle, D. J. Smith, H. Terrones, D. Díaz, M. Terrones, Small 2006, 2, 346–350;
- 13bS. Jiang, Y. Ma, G. Jian, H. Tao, X. Wang, Y. Fan, Y. Lu, Z. Hu, Y. Chen, Adv. Mater. 2009, 21, 4953–4956.
- 14
- 14aG. Cho, B. M. Fung, D. T. Glatzhofer, J. S. Lee, Y. G. Shul, Langmuir 2001, 17, 456–461;
- 14bX. Zhang, J. Zhang, W. Song, Z. Liu, J. Phys. Chem. B 2006, 110, 1158–1165.
- 15
- 15aP. M. Carrasco, H. J. Grande, M. Cortazar, J. M. Alberdi, J. Areizaga, J. A. Pomposo, Synth. Met. 2006, 156, 420–425;
- 15bH. T. Ham, Y. S. Choi, N. Jeong, I. J. Chung, Polymer 2005, 46, 6308–6315;
- 15cM. Forsyth, V. T. Truong, M. E. Smith, Polymer 1994, 35, 1593–1601.
- 16
- 16aF. Tuinstra, J. L. Koenig, J. Chem. Phys. 1970, 53, 1126–1130;
- 16bT. Kowalewski, N. V. Tsarevsky, K. Matyjaszewski, J. Am. Chem. Soc. 2002, 124, 10632–10633;
- 16cT. Kyotani, N. Sonobe, A. Tomita, Nature 1988, 331, 331–333.
- 17
- 17aR. Čabala, J. Škarda, K. Potje-Kamloth, Phys. Chem. Chem. Phys. 2000, 2, 3283–3291;
- 17bX. G. Li, A. Li, M. R. Huang, Y. Liao, Y. G. Lu, J. Phys. Chem. C 2010, 114, 19244–19255.
- 18J. Robertson, Adv. Phys. 1986, 35, 317–374.
- 19
- 19aR. F. Pasternack, C. Bustamante, P. J. Collings, A. Giannetto, E. J. Gibbs, J. Am. Chem. Soc. 1993, 115, 5393–5399;
- 19bD. Keller, C. Bustamante, J. Chem. Phys. 1986, 84, 2972–2980.
- 20
- 20aA. El Ruby Mohamed, S. Rohani, Energy Environ. Sci. 2011, 4, 1065–1086;
- 20bY. Zhang, G. Li, Y. Jin, Y. Zhang, J. Zhang, L. Zhang, Chem. Phys. Lett. 2002, 365, 300–304;
- 20cL. Qie, W. Chen, Z. Wang, Q. Shao, X. Li, L. Yuan, X. Hu, W. Zhang, Y. Huang, Adv. Mater. 2012, 24, 2047–2050.
- 21Y. Zhang, T. Chen, J. Wang, G. Min, L. Pan, Z. Song, Z. Sun, W. Zhou, J. Zhang, Appl. Surf. Sci. 2012, 258, 4729–4732.
- 22
- 22aA. R. Armstrong, C. Arrouvel, V. Gentili, S. C. Parker, M. S. Islam, P. G. Bruce, Chem. Mater. 2010, 22, 1759–1769;
- 22bP. Simon, Y. Gogotsi, Acc. Chem. Res. 2013, 46, 1094–1103;
- 22cY. Ren, Z. Liu, F. Pourpoint, A. R. Armstrong, C. P. Grey, P. G. Bruce, Angew. Chem. 2012, 124, 2206–2209; Angew. Chem. Int. Ed. 2012, 51, 2164–2167;
- 22dJ. Ge, Y. Yin, Angew. Chem. 2011, 123, 1530–1561; Angew. Chem. Int. Ed. 2011, 50, 1492–1522.