Synthesis, Optical Properties, and Self-Assembly of Ultrathin Hexagonal In2S3 Nanoplates†
Kang Hyun Park Dr.
Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea, Fax: (+82) 31-299-4572
Search for more papers by this authorKwonho Jang
Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea, Fax: (+82) 31-299-4572
Search for more papers by this authorSeung Uk Son Prof.
Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea, Fax: (+82) 31-299-4572
Search for more papers by this authorKang Hyun Park Dr.
Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea, Fax: (+82) 31-299-4572
Search for more papers by this authorKwonho Jang
Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea, Fax: (+82) 31-299-4572
Search for more papers by this authorSeung Uk Son Prof.
Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea, Fax: (+82) 31-299-4572
Search for more papers by this authorThis work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, KRF-2005-005J11901) and through a Faculty Research Fund-2005 funded by Sungkyunkwan University. We thank J. S. Ju at Cooperative Center for Research Facilities at Sungkyunkwan University for TEM studies.
Graphical Abstract
Arrested precipitation of In2S3 affords ultrathin hexagonal nanoplates with 0.76-nm thickness and controllable sizes of 22–63 nm. The pictures show (from left to right) TEM images of 63-nm nanoplates aligned parallel to a support, a side view of nanoplates, and 45-nm nanoplates self-assembled into microwires.
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2006/z601031_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Selected literature:
- 1aJ. T. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res. 1999, 32, 435;
- 1bY. Sun, Y. Xia, Science 2002, 298, 2176;
- 1cB. Nikoobakht, M. A. El-Sayed, Chem. Mater. 2003, 15, 1957;
- 1dspecial issue on nanowires: Adv. Mater. 2003, 15, 351–466.
- 2
- 2aY. Cui, C. M. Lieber, Science 2001, 291, 851;
- 2bM. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 2001, 292, 1897;
- 2cT. Hanrath, B. A. Korgel, J. Am. Chem. Soc. 2002, 124, 1424;
- 2dF. Dumestre, B. Chaudret, C. Amiens, M.-C. Fromen, M.-J. Casanove, M. Respaud, P. Zurcher, Angew. Chem. 2002, 114, 4462;
10.1002/1521-3757(20021115)114:22<4462::AID-ANGE4462>3.0.CO;2-H Google ScholarAngew. Chem. Int. Ed. 2002, 41, 4286;10.1002/1521-3773(20021115)41:22<4286::AID-ANIE4286>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 2eW. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 2002, 295, 2425;
- 2fC. Qian, F. Kim, L. Ma, F. Tsui, P. Yang, J. Liu, J. Am. Chem. Soc. 2004, 126, 1195.
- 3
- 3aM. B. Sigman, Jr.,A. Ghezelbash, T. Hanrath, A. E. Sanuders, F. Lee, B. A. Korgel, J. Am. Chem. Soc. 2003, 125, 16050;
- 3bH.-T. Zhang, G. Wu, X.-H. Chen, Langmuir 2005, 21, 4281;
- 3cW. Wang, B. Poudel, J. Yang, D. Z. Wang, Z. F. Ren, J. Am. Chem. Soc. 2005, 127, 13792;
- 3dY. Hou, H. Kondoh, M. Shimojo, T. Kogure, T. Ohta, J. Phys. Chem. B 2005, 109, 19094;
- 3eW. Lu, Y. Ding, Y. Chen, Z. L. Wang, J. Fang, J. Am. Chem. Soc. 2005, 127, 10112;
- 3fS. S. Garje, D. J. Eisler, J. S. Ritch, M. Afzaal, P. O'Brien, T. Chivers, J. Am. Chem. Soc. 2006, 128, 3120.
- 4
- 4aS. Chen, D. L. Carroll, J. Phys. Chem. B 2004, 108, 5500;
- 4bY.-W. Zhang, X. Sun, R. Si, L. -P, You, C.-H. Yan, J. Am. Chem. Soc. 2005, 127, 3260;
- 4cY. He, G. Shi, J. Phys. Chem. B 2005, 109, 17503;
- 4dY. Xiong, J. M. McLellan, J. Chen, Y. Yin, Z.-Y. Li, Y. Xia, J. Am. Chem. Soc. 2005, 127, 17118;
- 4eK. Aslan, J. R. Lakowicz, C. D. Geddes, J. Phys. Chem. B 2005, 109, 6247;
- 4fB. Liu, J. Xie, J. Y. Lee, Y. P. Ting, J. P. Chen, J. Phys. Chem. B 2005, 109, 15256.
- 5
- 5aY. C. Cao, J. Am. Chem. Soc. 2004, 126, 7456;
- 5bR. Si, Ya.-W. Zhang, L.-P. You, C.-H. Yan, Angew. Chem. 2005, 117, 3320; Angew. Chem. Int. Ed. 2005, 44, 3256;
- 5cT. Yu, J. Joo, Y. I. Park, T. Hyeon, J. Am. Chem. Soc. 2006, 128, 1786.
- 6
- 6aV. F. Puntes, K. M. Krishnan, A. P. Alivisatos, Science 2001, 291, 2115;
- 6bV. F. Puntes, D. Zanchet, C. K. Erdonmez, A. P. Alivisatos, J. Am. Chem. Soc. 2002, 124, 12874;
- 6cS. Chen, Z. Fan, D. L. Carroll, J. Phys. Chem. B 2002, 106, 10777.
- 7
- 7aH. Weller, Angew. Chem. 1993, 105, 43; Angew. Chem. Int. Ed. Engl. 1993, 32, 41;
- 7bA. P. Alivisatos, J. Phys. Chem. 1996, 100, 13226;
- 7cS. Empedocles, M. Bawendi, Acc. Chem. Res. 1999, 32, 389;
- 7dM. Nirmal, L. Brus, Acc. Chem. Res. 1999, 32, 407;
- 7eZ. A. Peng, X. Peng, J. Am. Chem. Soc. 2002, 124, 3343;
- 7fD. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, A. P. Alivisatos, Nature 2004, 430, 190.
- 8Selected examples:
- 8aZ. A. Peng, X. Peng, J. Am. Chem. Soc. 2001, 123, 183;
- 8bY.-W. Jun, S.-M. Lee, N.-J. Kang, J. Cheon, J. Am. Chem. Soc. 2001, 123, 5150;
- 8cJ. Joo, H. B. Na, T. Yu, J. H. Yu, Y. W. Kim, F. Wu, J. Z. Zhang. T. Hyeon, J. Am. Chem. Soc. 2003, 125, 11100;
- 8dY. C. Cao, J. Wang, J. Am. Chem. Soc. 2004, 126, 14336.
- 9
- 9aL. Motte, M. P. Pileni, J. Phys. Chem. B 1998, 102, 4104;
- 9bX. Wen, W. Zhang, S. Yang, Z. R. Dai, Z. L. Wang, Nano Lett. 2002, 2, 1397;
- 9cL. Chen, Y.-B. Chen, L.-M. Wu, J. Am. Chem. Soc. 2004, 126, 16334;
- 9dZ. Liu, D. Xu, J. Liang, J. Shen, S. Zhang, Y. Quan, J. Phys. Chem. B 2005, 109, 10699.
- 10
- 10aN. M. Dimitrijevic, P. V. Kamat, Langmuir 1987, 3, 1004;
- 10bR. Vogel, P. Hoyer, H. Weller, J. Phys. Chem. 1994, 98, 3183;
- 10cR. Suarez, P. K. Nair, P. V. Kamat, Langmuir 1998, 14, 3236.
- 11
- 11aR. Diehl, R. Nitsche, J. Cryst. Growth 1975, 28, 306;
- 11bS.-H. Yu, L. Shu, Y.-S. Wu, J. Yang, Y. Xie, Y.-T. Qian, J. Am. Ceram. Soc. 1999, 82, 457.
- 12T. Asikainen, M. Ritala, M. Leskela, Appl. Surf. Sci. 1994, 82/ 83, 122.
- 13
- 13aJapanese patent application, Chem. Abstr. 1981, 95, 107324x;
- 13bS. Yu, L. Shu, Y. Qian, Y. Xie, J. Yang, L. Yang, Mater. Res. Bull. 1998, 33, 717.
- 14
- 14aW.-T. Kim, C.-D. Kim, J. Appl. Phys. 1986, 60, 2631;
- 14bR. Nomura, S. Inazawa, K. Kanaya, H. Matsuda, Appl. Organomet. Chem. 1989, 3, 195.
- 15
- 15aE. Dalas, S. Sakkopoulos, E. Vitoratos, G. Maroulis, L. Kobotiatis, J. Mater. Sci. 1993, 28, 5456;
- 15bN. Naghavi, S, Spiering, M. Powalla, B. Cavana, D. Lincot, Prog. Photovoltaics Res. Appl. 2003, 11, 437;
- 15cJ. Sterner, J. Malmstrom, L. Stolt, Prog. Photovoltaics Res. Appl. 2005, 13, 179.
- 16
- 16aD. Braunger, D. Hariskos, T. Walter, H. W. Schock, Solar Energy Mater. Solar Cells 1996, 40, 97;
- 16bA. Ennaoui, C. D. Lokhande, M. Weber, R. Scheer, H. J. Lawerenz, 14th European Photovoltaic Solar Energy Conference (EPSEC), Barcelona, 1997.
- 17
- 17aH. B. Richard, H. M. William, J. Phys. Chem. Solids 1959, 10, 333;
- 17bC. Kaito, Y. Saito, K. Fujita, J. Cryst. Growth 1989, 94, 967;
- 17cJ. C. Fitzmaurice, I. P. Parkin, Main Group Met. Chem. 1994, 17, 481.
- 18
- 18aR. Nomura, K. Konishi, H. Matsuda, Thin Solid Films 1991, 198, 339;
- 18bC. D. Lokhande, A. Ennaoui, P. S. Patil, M. Giersig, K. Diesner, M. Muller, H. Tributsch, Thin Solid Films 1999, 340, 18.
- 19
- 19aP. N. Kumta, P. P. Phule, S. H. Risbud, Mater. Lett. 1987, 5, 401;
- 19bP. V. Kamat, N. M. Dimitrijevic, R. W. Fessenden, J. Phys. Chem. 1988, 92, 2324;
- 19cY. Nosaka, N. Ohta, H. Miyama, J. Phys. Chem. 1990, 94, 3752;
- 19dS. Avivi, O. Palchik, W. Palchick, M. A. Slifkin, A. M. Weiss, A. Gedanken, Chem. Mater. 2001, 13, 2195.
- 20D. K. Nagesha, X. Liang, A. A. Mamedov, G. Gainer, M. A. Eastman, M. Giersig, J.-J. Song, T. Ni, N. A. Kotov, J. Phys. Chem. B 2001, 105, 7490.
- 21
- 21aS. U. Son, Y. Jang, J. Park, H. B. Na, H. M. Park, H. J. Yun, J. Lee, T. Hyeon, J. Am. Chem. Soc. 2004, 126, 5026;
- 21bS. U. Son, U. K. Park, J. Park, T. Hyeon, Chem. Commun. 2004, 778;
- 21cS. U. Son, Y. Jang, K. Y. Yoon, C. An. Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, T. Hyeon, Chem. Commun. 2005, 86.
- 22For β-In2S3, the parameters of the tetragonal crystal lattice are a=b=7.62 Å, c=32.32 Å.
- 23Powder Diffraction File Sets 1–5 (Revised), Joint Committee on Powder Diffraction Standards, Philadelphia, 1967, pp. 5-0729–5-0731.
- 24Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, H. Xu, Nat. Mater. 2003, 2, 821.
- 25 Physics of Quantum Well Devices (Ed.: ), Kluwer, Dordrecht, 2000.