Cross-Hybridization of Pyridinedicarboxamide Helical Strands and Their N-Oxides†
Chuanlang Zhan Dr.
Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France, Fax: (+33) 540-00-22-15
Search for more papers by this authorJean-Michel Léger Prof.
Laboratoire de Pharmacochimie, 146 rue Léo Saignat, 33076 Bordeaux, France
Search for more papers by this authorIvan Huc Dr.
Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France, Fax: (+33) 540-00-22-15
Search for more papers by this authorChuanlang Zhan Dr.
Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France, Fax: (+33) 540-00-22-15
Search for more papers by this authorJean-Michel Léger Prof.
Laboratoire de Pharmacochimie, 146 rue Léo Saignat, 33076 Bordeaux, France
Search for more papers by this authorIvan Huc Dr.
Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France, Fax: (+33) 540-00-22-15
Search for more papers by this authorThis work was supported by the CNRS, the University of Bordeaux I, the University of Bordeaux II, and by the French Ministry of Research and Education. We thank J. Lefeuvre for performing ab initio calculations.
Graphical Abstract
Swapping partners: The presence of N-oxide functions in double-helical dimers formed from oligo(pyridinecarboxamide)s promotes heterodimerization (see picture). This process mimicks the essence of base pairing and information storage in DNA through heterologous A/T and G/C Watson–Crick base pairing.
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2006/z600785_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Li, D. R. Liu, Angew. Chem. 2005, 116, 4956;
Angew. Chem. Int. Ed. 2004, 43, 4848;
T. M. Snyder, D. R. Liu, Angew. Chem. 2005, 117, 7545;
10.1002/ange.200502879 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 7379.
- 2N. C. Seeman, Angew. Chem. 1998, 110, 3408;
10.1002/(SICI)1521-3757(19981204)110:23<3408::AID-ANGE3408>3.0.CO;2-S Google ScholarAngew. Chem. Int. Ed. 1998, 37, 3220;10.1002/(SICI)1521-3773(19981217)37:23<3220::AID-ANIE3220>3.0.CO;2-C CAS PubMed Web of Science® Google ScholarP. W. K. Rothemund, A. Ekani-Nkodo, N. Papadakis, A. Kumar, D. K. Fygenson, E. Winfree, J. Am. Chem. Soc. 2004, 126, 16344; M. Endo, N. C. Seeman, T. Majima, Angew. Chem. 2005, 117, 6228;10.1002/ange.200501034 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 6074; A. Y. Koyfman, G. Braun, S. Magonov, A. Chworos, N. O. Reich, L. Jaeger, J. Am. Chem. Soc. 2005, 127, 11886; S. H. Park, C. Pistol, S. J. Ahn, J. H. Reif, A. R. Lebeck, C. Dwyer, T. H. LaBean, Angew. Chem. 2006, 118, 749; Angew. Chem. Int. Ed. 2006, 45, 735;.
- 3M. Albrecht, Angew. Chem. 2005, 117, 6606;
10.1002/ange.200501472 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 6448.
- 4X. Yang, B. Gong, Angew. Chem. 2005, 117, 1376; Angew. Chem. Int. Ed. 2005, 44, 1352.
- 5M. Albrecht, Chem. Rev. 2001, 101, 3457; C. Piguet, G. Bernardinelli, G. Hopfgartner, Chem. Rev. 1997, 97, 2005.
- 6E. A. Archer, M. J. Krische, J. Am. Chem. Soc. 2002, 124, 5074;
H. Gong, M. J. Krische, J. Am. Chem. Soc. 2005, 127, 1719;
E. A. Archer, A. E. Sochia, M. J. Krische, Chem. Eur. J. 2001, 7, 2059.
10.1002/1521-3765(20010518)7:10<2059::AID-CHEM2059>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 7A. P. Bisson, F. J. Carver, D. S. Eggleston, R. C. Haltiwanger, C. A. Hunter, D. L. Livingstone, J. F. MacCabe, C. Rotger, A. E. Rowan, J. Am. Chem. Soc. 2000, 122, 8856.
- 8B. Gong, Y. Yan, H. Zeng, E. Skrzypczak-Jankunn, Y. Wah Kim, J. Zhu, H. Ickes, J. Am. Chem. Soc. 1999, 121, 5607; H. Zeng, R. S. Miller, R. A. Flowers II, B. Gong, J. Am. Chem. Soc. 2000, 122, 2635.
- 9P. S. Corbin, S. C. Zimmerman, J. Am. Chem. Soc. 2000, 122, 3779; P. S. Corbin, S. C. Zimmerman, P. A. Thiessen, N. A. Hawryluk, T. J. Murray, J. Am. Chem. Soc. 2001, 123, 10475.
- 10C. Schmuck, W. Wienand, Angew. Chem. 2001, 113, 4493;
10.1002/1521-3757(20011203)113:23<4493::AID-ANGE4493>3.0.CO;2-E Google ScholarAngew. Chem. Int. Ed. 2001, 40, 4363;10.1002/1521-3773(20011203)40:23<4363::AID-ANIE4363>3.0.CO;2-8 CAS PubMed Web of Science® Google ScholarC. Schmuck, W. Wienand, J. Am. Chem. Soc. 2003, 125, 452.
- 11B. Di Blasio, E. Benedetti, V. Pavone, C. Pedone, Biopolymers 1989, 28, 203.
- 12V. Berl, I. Huc, R. Khoury, M. J. Krische, J.-M. Lehn, Nature 2000, 407, 720;
V. Berl, I. Huc, R. Khoury, J.-M. Lehn, Chem. Eur. J. 2001, 7, 2810;
10.1002/1521-3765(20010702)7:13<2810::AID-CHEM2810>3.0.CO;2-5 CAS PubMed Web of Science® Google ScholarV. Maurizot, J.-M. Léger, P. Guionneau, I. Huc, Russ. Chem. Bull. 2004, 113, 1572; H. Jiang, V. Maurizot, I. Huc, Tetrahedron 2004, 60, 10029.
- 13C. Dolain, C. Zhan, J.-M. Léger, I. Huc, J. Am. Chem. Soc. 2005, 127, 2400.
- 14B. Hasenknopf, J.-M. Lehn, G. Baum, D. Fenske, Proc. Est. Acad. Sci. Eng. Proc. Natl. Acad. Sci. USA 1996, 93, 1397;
J.-M. Lehn, Chem. Eur. J. 2000, 6, 2097.
10.1002/1521-3765(20000616)6:12<2097::AID-CHEM2097>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 15H. Zeng, H. Ickes, R. A. Flowers II, B. Gong, J. Org. Chem. 2001, 66, 3574.
- 16Y. Tanaka, H. Katagiri, Y. Furusho, E. Yashima, Angew. Chem. 2005, 117, 3935; Angew. Chem. Int. Ed. 2005, 44, 3867.
- 17G. J. Gabriel, B. L. Iverson, J. Am. Chem. Soc. 2002, 124, 15174; Q.-Z. Zhou, X.-K. Jiang, X.-B. Shao, G.-J. Chen, M.-X. Jia, Z.-T. Li, Org. Lett. 2003, 5, 1955.
- 18V. Berl, I. Huc, R. Khoury, J.-M. Lehn, Chem. Eur. J. 2001, 7, 2798;
10.1002/1521-3765(20010702)7:13<2798::AID-CHEM2798>3.0.CO;2-L CAS PubMed Web of Science® Google ScholarI. Huc, V. Maurizot, H. Gornitzka, J.-M. Léger, Chem. Commun. 2002, 578; C. Dolain, A. Grélard, M. Laguerre, H. Jiang, V. Maurizot, I. Huc, Chem. Eur. J. 2005, 11, 6135.
- 19A. Acocella, A. Venturini, F. J. Zerbetto, J. Am. Chem. Soc. 2004, 126, 2362.
- 20See the Supporting Information.
- 21The presence of two N-oxide groups in 2 a slightly lowers its ability to hybridize whereas the contrary occurs for 1 a, thus suggesting that side-chain and terminal-group effects are complex and do not operate in the same manner on the oxidized oligomers as they do on their precursors.
- 22Crystal data for 3 a⋅3 b: C108H82N30O24⋅CHCl3⋅C3H7NO⋅2 H2O, Mr=2412.53, crystal size 0.10×0.10×0.05, monoclinic, space group P21/n, Z=4, a=26.0433(12), b=14.5247(3), c=26.6580(10) Å, β=115.935(2), V=9068.4(6) Å3, ρcalcd=1.767 mg m−3, T=163(2) K, θmin=6.33, θmax=50.43, λ=1.54180 Å. Radiation type CuKα, μ(CuKα)=1.871 mm−1. Data collected on a Rigaku MM007-Rapid R-AXIS diffractometer with confocal optics. Of 95 321 reflections measured, 9455 were unique (Rint=0.2080), 5092 with I>2σ(I), 1271 parameters in the final refinement. The structure was solved by direct methods and refined by full-matrix least-squares on F2 (SHEXLTL version 6.12). The final R indices were R1 (I>2σ(I))=0.1218, wR2(F2)=0.3439 (all data). CCDC-299505 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 23M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. S. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347.
- 24A. Wu, L. Isaacs, J. Am. Chem. Soc. 2003, 125, 4831; D. Bilgiçer, X. Xing, K. Kumar, J. Am. Chem. Soc. 2001, 123, 11815.