Polar Ozone Depletion (Nobel Lecture)†‡
Corresponding Author
Prof. Dr. Mario J. Molina
Department of Earth, Atmospheric, and Planetary Sciences, and, Department of Chemistry Massachusetts Institute of Technology Cambridge, MA 02139 (USA) Fax: Int. code +(617)258-6525 e-mail: [email protected]
Department of Earth, Atmospheric, and Planetary Sciences, and, Department of Chemistry Massachusetts Institute of Technology Cambridge, MA 02139 (USA) Fax: Int. code +(617)258-6525 e-mail: [email protected]Search for more papers by this authorCorresponding Author
Prof. Dr. Mario J. Molina
Department of Earth, Atmospheric, and Planetary Sciences, and, Department of Chemistry Massachusetts Institute of Technology Cambridge, MA 02139 (USA) Fax: Int. code +(617)258-6525 e-mail: [email protected]
Department of Earth, Atmospheric, and Planetary Sciences, and, Department of Chemistry Massachusetts Institute of Technology Cambridge, MA 02139 (USA) Fax: Int. code +(617)258-6525 e-mail: [email protected]Search for more papers by this authorCopyright © The Nobel Foundation 1996. We thank the Nobel Foundation, Stockholm, for permission to print this lecture.
On the rigor of Science
…In that Empire, the Art of Cartography achieved such Perfection that the map of a single Province occupied an entire City, and the map of the Empire an entire Province. With time, those unwieldy maps did not satisfy and the Cartographers raised a Map of the Empire, with the size of the Empire and which coincided with it on every point …
Abstract
Cause and result can be geographically widely separated. This fact is corroborated by the finding that the annually recurring ozone hole over Antarctica, which has been steadily increasing in size since 1985, is predominantly due to anthropogenic emissions from the Northern Hemisphere. How the realization dawned that it is primarily the chlorine atoms released by photochemical reactions of CFCs in the upper stratosphere that destroy the ozone shield is described by M. J. Molina in his Nobel Lecture.
References
- 1 “The Influence of Nitrogen Oxides on Atmosphere Ozone Content”: P. J. Crutzen, Q. J. R. Meteorol. Soc. 1970, 96, 320–325.
- 2 “Reduction, of Stratospheric Ozone by Nitrogen Oxide Catalysts from Supersonic Transport Exhaust”: H. S. Johnston, Science 1971, 173, 517–522.
- 3 “Stratospheric Sink for Chlorofluoromethanes: Chlorine Catalysed Destruction of Ozone”: M. J. Molina, F. S. Rowland, Nature 1974, 249, 810–814.
- 4 “Halogenated Hydrocarbons in and over the Atlantic”: J. E. Lovelock, R. J. Maggs, R. J. Wade, Nature 1973, 241, 194–196.
- 5 “Stratospheric Chlorine: A Possible Sink for Ozone”: R. S. Stolarski, R. Cicerone, Can. J. Chem. 1974, 52, 1610–1615.
- 6 Stratospheric Pollution and Ozone Depletion: T.-L. Shen, P. J. Wooldridge, M. J. Molina in Composition, Chemistry, and Climate of the Atmosphere (Ed.: H. B. Singh), Van Nostrand Reinhold, New York, 1995.
- 7 “Status of Stratospheric Ozone Depletion”: J. P. D. Abbatt, M. J. Molina, Annu. Rev. Energy Environ. 1993, 18, 1–29.
- 8 “Scientific Assessment of Ozone Depletion 1994”: World Meteorological Organization, WMO Global Ozone Research and Monitoring Project, Report No. 37, 1995.
- 9 “Large Losses of Total Ozone in Antarctica Reveal Seasonal ClOx/NOx Interactions”: J. C. Farman, B. G. Gardiner, J. D. Shanklin, Nature 1985, 315, 207–210.
- 10 “On the Depletion of Antarctic Ozone”: S. Solomon, R. R. Garcia, F. S. Rowland, D. J. Wuebbles, Nature 1986, 321, 755–758.
- 11 “Reduction of Antarctic Ozone due to Synergistic Interactions of Chlorine and Bromine”: M. B. McElroy, R. J. Salawitch, S. C. Wofsy, J. A. Logan, Nature 1986, 321, 759–762.
- 12 “Production of the Cl2O2 from the Self-Reaction of the ClO Radical”: L. T. Molina, M. J. Molina, J. Phys. Chem. 1987, 91, 433–436.
- 13 “Structures, Relative Stabilities, and Vibrational Spectra of Isomers of Cl2O2: The Role of Chlorine Oxide Dimer in Antarctic Ozone Depleting Mechanism”: M. P. McGrath, K. C. Clemitshaw, F. S. Rowland, W. G. Hehre, J. Phys. Chem. 1990, 94, 6126–6132.
- 14 “The Rotational Spectrum and Structure of Chlorine Peroxide”: M. Birk, R. R. Friedl, E. A. Cohen, H. M. Pickett, S. P. Sander, J. Chem. Phys. 1989, 91, 6588–6597.
- 15 “Quantum Yield of Chlorine-Atom Formation in the Photodissociation of Chlorine Peroxide (ClOOCl) at 308 nm”: M. J. Molina, A. J. Colussi, L. T. Molina, R. N. Schindler, T.-L. Tso, Chem. Phys. Lett. 1990, 173, 310–315.
- 16 “The Stability and Photochemistry of Dimers of the ClO Radical and Implications for Antarctic Ozone Depletion”: R. A. Cox, G. D. Hayman, Nature 1988, 332, 796–800.
- 17 “Stratospheric Aerosols”: C. E. Junge, C. W. Chagnon, J. E. Manson, J. Meteorol. 1961, 18, 81–108.
- 18 “Do Stratospheric Aerosol Droplets Freeze Above the Ice Frost Point?”: T. Koop, U. M. Biermann, W. Raber, B. Luo, P. J. Crutzen, T. Peter, Geophys. Res. Lett. 1995, 22, 917–920.
- 19 “Stratospheric Aerosol Increases and Ozone Destruction: Implications from Mass Spectrometer Measurements”: F. Arnold, Ber. Bunsenges. Phys. Chem. 1992, 96, 339–350.
- 20 “Vapor Pressure Measurements for the H2SO4/HNO3/H2O and H2SO4/HCl/H2O Liquid Systems, Incorporation of Stratospheric Acids into Background Sulfate Aerosols”: R. Zhang, P. J. Wooldridge, M. J. Molina, J. Phys. Chem. 1993, 97, 8541–8548.
- 21 “Physical Chemistry of the H2SO4/HNO3/H2O System: Implications for Polar Stratospheric Clouds”: M. J. Molina, R. Zhang, P. J. Wooldridge, J. R. McMahon, J. E. Kim, H. Y. Chang, K. D. Beyer, Science 1993, 261, 1418–1423.
- 22 “Composition and Freezing of Aqueous H2SO4/HNO3 Solutions under Polar Stratospheric Conditions”: K. D. Beyer, S. W. Seago, H. Y. Chang, M. J. Molina, Geophys. Res. Lett. 1994, 21, 871–874.
- 23 “Stratospheric Aerosol Growth and HNO3 Gas Phase Depletion from Coupled HNO3 and Water Uptake by Liquid Particles”: K. S. Carslaw, B. P. Luo, S. L. Clegg, T. Peter, P. Brimblecombe, P. J. Crutzen, Geophys. Res. Lett. 1994, 21, 2479–2482.
- 24 “An Upper Limit to the Rate of the HCl + ClONO2 Reaction”: L. T. Molina, M. J. Molina, R. A. Stachnick, R. D. Tom, J. Phys. Chem. 1985, 89, 3779–3781.
- 25 “Antarctic Stratospheric Chemistry of Chlorine Nitrate, Hydrogen Chloride and Ice: Release of Active Chlorine”: M. J. Molina, T.-L. Tso, L. T. Molina, F. C.-Y. Wang, Science 1987, 238, 1253–1257.
- 26
“ Laboratory Studies of Atmospheric Heterogeneous Chemistry”:
C. E. Kolb,
D. R. Worsnop,
M. S. Zahniser,
P. Davidovits,
C. F. Keyser,
M.-T. Leu,
M. J. Molina,
D. R. Hanson,
A. R. Ravishankara,
L. R. Williams,
M. A. Tolbert in
Advances in Physical Chemistry Series
( Current Problems and Progress in Atmospheric Chemistry)
(Ed.: J. R. Barker),
World Scientific Publishing,
1995.
10.1142/9789812831712_0018 Google Scholar
- 27 “Interaction of HCl Vapor with Water-Ice: Implications for the Stratosphere”: J. P. D. Abbatt, K. D. Beyer, A. F. Fucaloro, J. R. McMahon, P. J. Wooldridge, R. Zhang, M. J. Molina, J. Geophys. Res. 1992, 97, 15819–15826.
- 28 The Probable Role of Stratospheric ‘Ice’ Clouds: Heterogeneous Chemistry of the Ozone Hole: M. J. Molina in Chemistry of the Atmosphere: The Impact of Global Change (Ed.: J. G. Calvert), Blackwell, Oxford, 1994.
- 29 “Heterogeneous Interactions of ClONO2 and HCl on Nitric Acid Trihydrate at 202 K”: J. P. D. Abbatt, M. J. Molina, J. Phys. Chem. 1992, 96, 7674–7679.
- 30 “What Hope for the Ozone Layer Now?” J. C. Farman, New Scientist 1987, 116 (1586), 50–54.
- 31 “Ozone Destruction by Chlorine Radicals within the Antarctic Vortex: The Spatial and Temporal Evolution of ClO-O3 Anticorrelation Based on In Situ ER-2 Data”: J. G. Anderson, W. H. Brune, M. H. Proffitt, J. Geophys. Res. 1989, 94, 11465–11479.