Disulfide-Reductase Inhibitors as Chemotherapeutic Agents: The Design of Drugs for Trypanosomiasis and Malaria
Corresponding Author
Prof. Dr. R. Heiner Schirmer
Institut für Biochemie II der Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg (Germany). Telefax: Int. code + (6221)56-5586
Institut für Biochemie II der Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg (Germany). Telefax: Int. code + (6221)56-5586Search for more papers by this authorDr. Joachim G. Müller
Institut für Biochemie II der Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg (Germany). Telefax: Int. code + (6221)56-5586
Search for more papers by this authorPriv.-Doz. R. Luise Krauth-Siegel
Institut für Biochemie II der Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg (Germany). Telefax: Int. code + (6221)56-5586
Search for more papers by this authorCorresponding Author
Prof. Dr. R. Heiner Schirmer
Institut für Biochemie II der Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg (Germany). Telefax: Int. code + (6221)56-5586
Institut für Biochemie II der Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg (Germany). Telefax: Int. code + (6221)56-5586Search for more papers by this authorDr. Joachim G. Müller
Institut für Biochemie II der Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg (Germany). Telefax: Int. code + (6221)56-5586
Search for more papers by this authorPriv.-Doz. R. Luise Krauth-Siegel
Institut für Biochemie II der Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg (Germany). Telefax: Int. code + (6221)56-5586
Search for more papers by this authorAbstract
Viewed globally, parasitic diseases such as malaria and Chagas' cardiopathy pose an increasing threat to human health and welfare. Recognition of this problem and the challenge of synthesizing a quinine-like antimalarial agent sparked off the development of the chemical industry about 100 years ago. Our contribution deals with aspects of drug design, a young branch of pharmaceutical chemistry. As drug targets the flavoenzyme, glutathione reductase, and the recently discovered parasite enzyme, trypanothione reductase, were chosen. Based on the knowledge of the structure of these molecules, the modeling of enzyme inhibitors as potential chemotherapeutic agents against parasites has become possible. In addition, biochemical and clinical observations are considered since chemical principles of biological evolution can serve as guidelines for the pharmaceutical chemists. The picture shows two erythrocytes destroyed by malaria parasites. In the center of the photograph a parasite is just leaving its host cell through the ruptured cell membrane. Its target could be a neighboring healthy erythrocyte.
Abstract
The designation “scourge of mankind” has been attached to parasitic infections such as Chagas' heart disease, sleeping sickness, and malaria. In many countries of the world they lead to human misery and massive socio-medical problems. Several approaches are possible for the design of chemotherapeutic agents that can interfere as enzyme inhibitors with the metabolism of parasites. For instance, structural motifs of an enzyme and its natural substrates can be expolited to control the kinetics of the enzyme–substrate interactions, and thus substrate analogues can influence the enzyme as inhibitors at various stages of the catalytic cycle. The results may be irreversible inhibition, destabilization of the enzyme's structure, or an alteration of its substrate specificity. Glutathione reductase and trypanothione reductase are target enzymes for this strategy of drug design in the fight against tropical diseases.
References
- 1 W. G. J. Hol, Angew. Chem. 1986, 98, 765–777. Angew. Chem. Int. Ed. Engl. 1986, 25, 767–778.
- 2 P. J. Goodford, J. Med. Chem. 1985, 28, 849–857.
- 3 D. W. Cushman, H. S. Cheung, E. F. Sabo, M. A. Ondetti, Biochemistry 1977, 16, 5484–5491.
- 4 M. von Itzstein, K.-Y. Wu, G. B. Kok, M. S. Pegg, J. C. Dyason, B. Jin, T. V. Phan, M. L. Smythe, H. F. White, S. W. Oliver, P. M. Colman, J. N. Varghese, D. M. Ryan, J. M. Woods, R. C. Bethell, V. J. Hotham, J. M. Cameron, C. R. Penn, Nature (London) 1993, 363, 418–423.
- 5 C. Unverzagt, Angew. Chem. 1993, 105, 1762–1764. Angew. Chem. Int. Ed. Engl. 1993, 32, 1691–1693.
- 6(a) H. M. Gilles, D. A. Warrell, Bruce-Chawatt's Essential Malariology, 3. Aufl., Edward Arnold, London, 1993. (b) D. J. Wyler, N. Engl. J. Med. 1992, 327, 1519–1521.
- 7 R. H. Schirmer, K. Becker, Futura 1993, 4, 15–21.
- 8(a) D. R. Brewster, D. Kwiatkowski, N. J. White, Lancet 1990, 336, 1039–1043. (b) M. V. Valero, L. R. Amador, C. Galindo, J. Figueroa, M. S. Bello, L. A. Murillo, A. L. Mora, G. Patarroyo, C. L. Rocha, M. Rojas, J. J. Aponte, L. E. Sarmiento, D. M. Lozada, C. G. Coronell, N. M. Ortega, J. E. Rosas, P. L. Alonso, M. E. Patarroyo, Lancet 1993, 341, 705–710. (c) A. F. G. Slater, A. Cerami, Nature (London) 1992, 355, 167–169.
- 9(a) R. Docampo, S. N. J. Moreno, Rev. Infect. Dis. 1984, 6, 223–238. (b) X. D. Luo, C. C. Shen, Med. Res. Rev. 1987, 7, 29–52. Qinghaosu is pronounced as if it were written ching-how-sue in English. This conforms with the Pinyin system of transliteration of Chinese characters which was officially adopted in 1975.
- 10 N. H. Hunt, R. Stocker, Blood Cells 1990, 16, 499–530.
- 11 R. H. Schirmer, T. Schöllhammer, G. Eisenbrand, R. L. Krauth-Siegel, Free Rad. Res. Commun. 1987, 3, 3–12.
- 12(a) H. Sies, Angew. Chem. 1986, 98, 1061–1075. Angew. Chem. Int. Ed. Engl. 1986, 25, 1058–1070. (b) B. Halliwell, J. M. C. Gutteridge, C. E. Cross, J. Lab. Clin. Med. 1992, 119, 598–620. (c) J. G. Müller, U. S. Bücheler, K. Kayser, R. H. Schirmer, D. Werner, R. L. Krauth-Siegel, Cell. Mol. Biol. 1993, 39, 389–396. (d) F. Haber, J. Weiss, Proc. R. Soc. London Ser. A 1934, 147, 332. (e) K. Becker, M. Gui, A. Traxler, C. Kirsten, R. H. Schirmer, Histochem. 1994, 102, 389–396.
- 13(a) R. Richmond, B. Halliwell, J. Inorg. Biochem. 1982, 17, 95–107. (b) B. Bayer, A. Dieckmann, K.-G. Fritsch, R. Kientsch, D. von Cunow, D. T. Spira, R. H. Schirmer, A. Wendel, A. Jung, Biol. Chem. Hoppe-Seyler 1984, 365, 965.
- 14(a) T. Vulliamy, P. Mason, L. Luzzatto, Trends Genet. 1992, 8, 138–143. (b) M. Chevion, T. Novak, G. Glaser, J. Mager, Eur. J. Biochem. 1982, 127, 405–409. (c) S. K. Martin, Parasitol. Today 1994, 10, 251–252.
- 15(a) H. Atamni, H. Ginsburg, Molec. Biochem. Parasitol. 1993, 61, 231–242. (b) C. W. Wright, I. D. Phillipsen, G. C. Kirby, D. C. Warhurst, M. A. Huffman, W. Ohigashi, Proc. 5th Malaria Meeting (Oxford) 1993, 22.
- 16 R. H. Schirmer, R. L. Krauth-Siegel, G. E. Schulz in Glutathione, Part A (Eds.: D. Dolphin, R. Poulson, O. Avramovic), Wiley, New York, 1989, pp. 553–596.
- 17 Y. Zhang, E. Hempelmann, R. H. Schirmer, Biochem. Pharmacol. 1988, 37, 855–860.
- 18 A. Holmgren, J. Biol. Chem. 1979, 254, 3672–3678.
- 19(a) C. H. Williams, Jr. in Chemistry and Biochemistry of Flavoenzymes, Vol. III (Ed. F. Müller ), CRC, Boca Raton, FL, 1992, pp. 121–211. (b) T. Ishikawa, Trends Biochem. Sci. 1992, 17, 463–468.
- 20 R. H. Schirmer, G. E. Schulz in Pyridine Nucleotide Coenzymes, Part B (Eds.: D. Dolphin, R. Poulson, O. Avramovic), Wiley, New York, 1987, pp. 333–379.
- 21 A. H. Fairlamb, Parasitology 1989, 99, 93–112.
- 22 A. H. Fairlamb, A. Cerami, Annu. Rev. Microbiol. 1992, 46, 695–729.
- 23 R. L. Krauth-Siegel, R. H. Schirmer, Nachr. Chem. Tech. Lab. 1989, 37, 1026–1034.
- 24 A. H. Fairlamb, P. Blackburn, P. Ulrich, B. T. Chait, A. Cerami, Science 1985, 227, 1485–1487.
- 25 S. L. Shames, A. H. Fairlamb, A. Cerami, C. T. Walsh, Biochemistry 1986, 25, 3519–3526.
- 26 R. L. Krauth-Siegel, B. Enders, G. B. Henderson, A. H. Fairlamb, R. H. Schirmer, Eur. J. Biochem. 1987, 164, 123–128.
- 27(a) D. J. Steenkamp, H. S. C. Spies, Eur. J. Biochem. 1994, 223, 43–50. (b) H. S. C. Spies, D. J. Steenkamp, Eur. J. Biochem. 1994, 224, 203–213. (c) E. G. S. Carnieri, S. N. J. Moreno, R. Docampo, Mol. Biochem. Parasitol. 1993, 61, 79–86.
- 28 A. H. Fairlamb, G. B. Henderson, A. Cerami, Proc. Natl. Acad. Sci. USA 1989, 86, 2607–2611.
- 29 M. C. Jockers-Scherübl, R. H. Schirmer, R. L. Krauth-Siegel, Eur. J. Biochem. 1989, 180, 267–272.
- 30(a) T. Godal, TDR news (Ed.: World Health Organization), 1992, 38, 1–2. (b) S. Majumder, J. J. Wirth, A. J. Bitonti, P. P. McCann, F. Kierszenbaum, J. Parasitol. 1992, 78, 371–374.
- 31 R. L. Krauth-Siegel, H. Lohrer, U. S. Bücheler, R. H. Schirmer in Biochemical Protozoology (Eds.: G. H. Coombs, M. North), Taylor and Francis, London, 1991, pp. 493–505.
- 32 S. Kutner, W. V. Breuer, H. Ginsburg, S. B. Aley, Z. I. Cabantchik, J. Cell. Physiol. 1985, 125, 521–527.
- 33(a) R. L. Krauth-Siegel, R. Blatterspiel, M. Saleh, E. Schiltz, R. H. Schirmer, R. Untucht-Grau, Eur. J. Biochem. 1982, 121, 259–267. (b) P. A. Karplus, G. E. Schulz, J. Mol. Biol. 1987, 195, 701–729.
- 34 P. A. Karplus, G. E. Schulz, J. Mol. Biol. 1989, 210, 163–180.
- 35 P. A. Karplus, R. L. Krauth-Siegel, R. H. Schirmer, G. E. Schulz, Eur, J. Biochem. 1988, 171, 193–198.
- 36 M. Bilzer, R. L. Krauth-Siegel, R. H. Schirmer, T. P. Akerboom, H. Sies, G. E. Schulz, Eur. J. Biochem. 1984, 138, 373–378.
- 37 E. F. Pai, G. E. Schulz, J. Biol. Chem. 1983, 258, 1752–1757.
- 38(a) U. S. Bücheler, D. Werner, R. H. Schirmer, Nucleic Acids Res. 1992, 20, 3127–3133. (b) B. Leistler, R. N. Perham, Biochemistry, 1994, 33, 2773–2781.
- 39 J. Kuriyan, X. P. Kong, T. S. R. Krishna, R. M. Sweet, N. J. Murgolo, H. Field, A. Cerami, G. B. Henderson, Proc. Natl. Acad. Sci. USA 1991, 88, 8764–8768.
- 40(a) W. N. Hunter, S. Bailey, J. Habash, S. J. Harrop, J. R. Helliwell, T. Aboagye-Kwarteng, K. Smith, A. H. Fairlamb, J. Mol. Biol. 1992, 227, 322–333. (b) S. Bailey, K. Smith, A. H. Fairlamb, W. N. Hunter, Eur. J. Biochem. 1993, 213, 67–75. (c) S. Bailey, K. Smith, A. H. Fairlamb, W. N. Hunter, Acta Crystallogr. B 1994 50, 139–154.
- 41 F. X. Sullivan, S. B. Sobolov, M. Bradley, C. T. Walsh, Biochemistry 1991, 30, 2761–2767.
- 42 C. B. Lantwin, I. Schlichting, W. Kabsch, E. F. Pai, R. L. Krauth-Siegel, Proteins Struct. Funct. Genet. 1994, 18, 161–173.
- 43(a) R. L. Krauth-Siegel, E. M. Jacoby, C. B. Lantwin in Flavins and Flavoproteins, Vol. 11 (Ed.: K. Yagi), de Gruyter, Berlin, 1993, pp. 258–268. (b) R. L. Krauth-Siegel, R. Schöneck, FASEB J. 1995, in press.
- 44 M. Bradley, U. S. Bücheler, C. T. Walsh, Biochemistry 1991, 30, 6124–6127.
- 45 G. B. Henderson, N. J. Murgolo, J. Kuriyan, K. Osapay, D. Kominos, A. Berry, N. S. Scrutton, N. W. Hinchliffe, R. N. Perham, A. Cerami, Proc. Natl. Acad. Sci. USA 1991, 88, 8769–8773.
- 46(a) T. J. Benson, J. H. McKie, J. Garforth, A. Borges, A. H. Fairlamb, K. T. Douglas, Biochem. J. 1992, 286, 9–11. (b) K.-G. E. Fritsch, Biol. Chem. Hoppe-Seyler 1982, 363, 1302. (c) E. M. Jacoby, I. Schlichting, R. L. Krauth-Siegel, unpublished.
- 47(a) K. Becker, R. I. Christopherson, W. B. Cowden, N. H. Hunt, R. H. Schirmer, Biochem. Pharmacol. 1990, 39, 59–65. (b) A. Schönleben-Janas, P. Kirsch, P. Mittl, R. H. Schirmer, R. L. Krauth-Siegel, unpublished.
- 48 D. H. Williams, J. P. L. Cox, A. J. Doig, M. Gardner, U. Gerhard, P. T. Kaye, A. R. Lal, I. A. Nicholls, C. J. Salter, R. C. Mitchell, J. Am. Chem. Soc. 1991, 113, 7020–7030.
- 49 D. H. Williams, Proc. Natl. Acad. Sci. USA 1993, 90, 1172–1178.
- 50
G. E. Schulz,
R. H. Schirmer,
Principles of Protein Structure,
Springer, New York,
1979.
10.1007/978-1-4612-6137-7 Google Scholar
- 51
G. E. Schulz,
Biol. Unserer Zeit
1984,
4, 121–124.
10.1002/biuz.19840140405 Google Scholar
- 52 C. T. Walsh in Modern Design of Antimalarial Drugs (Ed.: World Health Organization), WHO, Geneva, 1982, pp. 95–109.
- 53(a) M. R. Davis, K. Kassahun, C. M. Jochheim, K. M. Brandt, T. A. Baillie, Chem. Res. Toxicol. 1993, 6, 376–383. (b) K. Becker, R. H. Schirmer, Methods Enzymol. 1994, in press.
- 54(a) P. A. Karplus, G. E. Schulz, J. Mol. Biol. 1989, 210, 163–180. (b) W. Janes, G. E. Schulz, Biochemistry 1990, 29, 4022–4030.
- 55(a) P. Feldhaus, T. Fröhlich, R. S. Goody, M. Isakov, R. H. Schirmer, Eur. J. Biochem. 1975, 57, 197–204. (b) G. B. Henderson, P. Ulrich, A. H. Fairlamb, J. Rosenberg, M. Pereira, M. Sela, A. Cerami, Proc. Natl. Acad. Sci. USA 1988, 85, 5374–5378.
- 56 T. Hibi, H. Kato, T. Nishioka, J. Oda, H. Yamaguchi, Y. Katsube, K. Tanizawa, T. Fukui, Biochemistry 1993, 32, 1548–1554.
- 57(a) S. E. Francis, I. Y. Gluzman, A. Oksman, A. Knickerbocker, R. Mueller, M. L. Bryant, D. R. Sherman, D. G. Russell, D. E. Goldberg, EMBO J. 1994, 13, 306–317. (b) T.-H. Jessen, R. Hilgenfeld, Angew. Chem. 1992, 104, 862–863. Angew. Chem. Int. Ed. Engl. 1992, 31, 848–849.
- 58 W. McClements, G. Yamanaka, V. Garsky, H. Perry, S. Bacchetti, R. Colonno, R. B. Stein, Virology 1988, 162, 270–273.
- 59 A. Nordhoff, U. S. Bücheler, D. Werner, R. H. Schirmer, Biochemistry 1993, 32, 4060–4066.
- 60 N. Li, A. Batzer, R. Daly, V. Yajnik, E. Skolnik, P. Chardin, D. Bar-Sagi, B. Margolis, J. Schlessinger, Nature (London) 1993, 363, 85–88.
- 61
T. Wieland in
Peptides of Poisonous Aminita Mushrooms (Ed.:
T. Wieland),
Springer, New York,
1986, pp. 22–100.
10.1007/978-3-642-71295-1_6 Google Scholar
- 62 R. S. Struthers, G. Tanaka, S. C. Koerber, T. Solmajer, E. L. Baniak, L. M. Gierasch, W. Vale, J. River, A. T. Hagler, Proteins Struct. Funct. Genet. 1990, 8, 295–304.
- 63 R. Hirschmann, Angew. Chem. 1991, 103, 1305–1330. Angew. Chem. Int. Ed. Engl. 1991, 30, 1278.
- 64 A. Giannis, T. Kolter, Angew. Chem. 1993, 105, 1303–1326. Angew. Chem. Int. Ed. Engl. 1993, 32, 1244–1267.
- 65 R. A. Wiley, D. H. Rich, Med. Res. Rev. 1993, 13, 327–348.
- 66 D. Voet, J. G. Voet, Biochemistry, Wiley, New York, 1990, pp. 382–389. Biochemie. VCH, Weinheim, 1992, pp. 376–382.
- 67(a) N. S. Scrutton, A. Berry, R. N. Perham, Nature (London) 1993, 343, 38–43. (b) I. Willner, E. Katz, A. Riklin, R. Kasher, J. Am. Chem. Soc. 1992, 114, 10965–10966. (c) S. M. Brocklehurst, Y. N. Kalia, R. N. Perham. Trends in Biochem. Sci. 1994, 19, 360–361.
- 68 W. P. Jencks, Proc. Natl. Acad. Sci. USA 1981, 78, 4046–4050.
- 69 C. N. Pace, U. Heinemann, U. Hahn, W. Saenger, Angew. Chem. 1991, 103, 351–369. Angew. Chem. Int. Ed. Engl. 1991, 24, 71–80.
- 70 D. H. Williams, Aldrichim. Acta 1991, 24, 71–80.
- 71 L. Serrano, J. L. Neira, J. Sancho, A. R. Fersht, Nature (London) 1992, 356, 453–455.
- 72 S. Dao-pin, U. Sauer, H. Nicholson, B. W. Matthews, Biochemistry 1991, 30, 7142–7153.
- 73 T. Dandekar, P. Argos, Prot. Eng. 1992, 5, 637–645.
- 74 T. Dandekar, P. Argos, J. Mol. Biol. 1994, 236, 844–861.
- 75 Z. Shakked, G. Guzikevich-Guerstein, F. Frolow, D. Rabinovich, A. Joachimiak, P. B. Sigler, Nature (London) 1994, 368, 469–473.