Photo-Driven Ammonia Synthesis via a Proton-Mediated Photoelectrochemical Device
Wan Lin
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorJiajie Chen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
College of Chemistry, Fuzhou University, Fuzhou, 350116 Fujian, P. R. China.
Search for more papers by this authorXiang Zhang
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108 Fujian, P. R. China
Search for more papers by this authorJing Lin
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108 Fujian, P. R. China
Search for more papers by this authorFuwen Lin
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007 China
Search for more papers by this authorShenXia Huang
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007 China
Search for more papers by this authorCorresponding Author
Prof. Yaobing Wang
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108 Fujian, P. R. China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorWan Lin
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorJiajie Chen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
College of Chemistry, Fuzhou University, Fuzhou, 350116 Fujian, P. R. China.
Search for more papers by this authorXiang Zhang
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108 Fujian, P. R. China
Search for more papers by this authorJing Lin
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108 Fujian, P. R. China
Search for more papers by this authorFuwen Lin
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007 China
Search for more papers by this authorShenXia Huang
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007 China
Search for more papers by this authorCorresponding Author
Prof. Yaobing Wang
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108 Fujian, P. R. China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorAbstract
N2 reduction reaction (NRR) by light is an energy-saving and sustainable ammonia (NH3) synthesis technology. However, it faces significant challenges, including high energy barriers of N2 activation and unclear catalytic active sites. Herein, we propose a strategy of photo-driven ammonia synthesis via a proton-mediated photoelectrochemical device. We used redox-catalysis covalent organic framework (COF), with a redox site (−C=O) for H+ reversible storage and a catalytic site (porphyrin Au) for NRR. In the proton-mediated photoelectrochemical device, the COF can successfully store e− and H+ generated by hydrogen oxidation reaction, forming COF−H. Then, these stored e− and H+ can be used for photo-driven NRR (108.97 umol g−1) under low proton concentration promoted by the H-bond network formed between −OH in COF−H and N2 on Au, which enabled N2 hydrogenation and NH3 production, establishing basis for advancing artificial photosynthesis and enhancing ammonia synthesis technology.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202422869-sup-0001-misc_information.pdf2.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F. Schneider, R. R. Schrock, Science 2018, 360, eaar6611.
- 2
- 2aK. A. Brown, D. F. Harris, M. B. Wilker, A. Rasmussen, N. Khadka, H. Hamby, S. Keable, G. Dukovic, J. W. Peters, L. C. Seefeldt, P. W. King, Science 2016, 352, 448–450;
- 2bQ. Wang, J. Guo, P. Chen, J. Energy Chem. 2019, 36, 25–36.
- 3M. Capdevila-Cortada, Nat. Catal. 2019, 2, 1055.
- 4
- 4aJ. Chang, W. Jing, X. Yong, A. Cao, J. Yu, H. Wu, C. Wan, S. Wang, G. I. N. Waterhouse, B. Yang, Z. Tang, X. Duan, S. Lu, Nat. Synth. 2024;
- 4bD. Yang, H. Yu, T. He, S. Zuo, X. Liu, H. Yang, B. Ni, H. Li, L. Gu, D. Wang, X. Wang, Nat. Commun. 2019, 10; 3844.
- 5J. Zhou, J. Li, L. Kan, L. Zhang, Q. Huang, Y. Yan, Y. Chen, J. Liu, S.-L. Li, Y.-Q. Lan, Nat. Commun. 2022, 13; 4681.
- 6
- 6aB. H. R. Suryanto, K. Matuszek, J. Choi, R. Y. Hodgetts, H.-L. Du, J. M. Bakker, C. S. M. Kang, P. V. Cherepanov, A. N. Simonov, D. R. MacFarlane, Science 2021, 372, 1187–1191;
- 6bY. Pang, C. Su, G. Jia, L. Xu, Z. Shao, Chem. Soc. Rev. 2021, 50, 12744–12787;
- 6cG. N. Schrauzer, T. D. Guth, J. Am. Chem. Soc. 1977, 99, 7189–7193.
- 7
- 7aX. Fu, V. A. Niemann, Y. Zhou, S. Li, K. Zhang, J. B. Pedersen, M. Saccoccio, S. Z. Andersen, K. Enemark-Rasmussen, P. Benedek, A. Xu, N. H. Deissler, J. B. V. Mygind, A. C. Nielander, J. Kibsgaard, P. C. K. Vesborg, J. K. Nørskov, T. F. Jaramillo, I. Chorkendorff, Nat. Mater. 2023, 23, 101–107;
- 7bX. Fu, J. B. Pedersen, Y. Zhou, M. Saccoccio, S. Li, R. Sažinas, K. Li, S. Z. Andersen, A. Xu, N. H. Deissler, J. B. V. Mygind, C. Wei, J. Kibsgaard, P. C. K. Vesborg, J. K. Nørskov, I. Chorkendorff, Science 2023, 379, 707–712.
- 8
- 8aP. Wang, F. Chang, W. Gao, J. Guo, G. Wu, T. He, P. Chen, Nat. Chem. 2016, 9, 64–70;
- 8bP. Chen, Z. Xiong, J. Luo, J. Lin, K. L. Tan, Nature 2002, 420, 302–304.
- 9Y. Guan, H. Wen, K. Cui, Q. Wang, W. Gao, Y. Cai, Z. Cheng, Q. Pei, Z. Li, H. Cao, T. He, J. Guo, P. Chen, Nat. Chem. 2024, 16, 373–379.
- 10A. P. Côté, A. I. Benin, N. W. Ockwig, M. O′Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166–1170.
- 11
- 11aT. He, Z. Zhao, R. Liu, X. Liu, B. Ni, Y. Wei, Y. Wu, W. Yuan, H. Peng, Z. Jiang, Y. Zhao, J. Am. Chem. Soc. 2023, 145, 6057–6066;
- 11bT. He, Y. Zhao, Angew. Chem. Int. Ed. 2023, 62, e202303086;
- 11cR. Das, P. Kumar Verma, C. M. Nagaraja, Coord. Chem. Rev. 2024, 514, 215944.
- 12
- 12aY. Qian, D. Li, Y. Han, H.-L. Jiang, J. Am. Chem. Soc. 2020, 142, 20763–20771;
- 12bW. Lin, J. Lin, X. Zhang, L. Zhang, R. A. Borse, Y. Wang, J. Am. Chem. Soc. 2023, 145, 18141–18147.
- 13
- 13aA. Wang, J. Li, T. Zhang, Nat. Chem. Rev. 2018, 2, 65–81;
- 13bL. Liu, A. Corma, Chem. Rev. 2018, 118, 4981–5079.
- 14
- 14aL. Ran, Z. Li, B. Ran, J. Cao, Y. Zhao, T. Shao, Y. Song, M. K. H. Leung, L. Sun, J. Hou, J. Am. Chem. Soc. 2022, 144, 17097–17109;
- 14bW. Lin, F. Lin, J. Lin, Z. Xiao, D. Yuan, Y. Wang, J. Am. Chem. Soc. 2024, 146, 16229–16236;
- 14cY. Zhang, L.-Z. Dong, S. Li, X. Huang, J.-N. Chang, J.-H. Wang, J. Zhou, S.-L. Li, Y.-Q. Lan, Nat. Commun. 2021, 12, 6390.
- 15
- 15aJ. N. Chang, S. Li, Q. Li, J. H. Wang, C. Guo, Y. R. Wang, Y. Chen, S. L. Li, Y. Q. Lan, Angew. Chem. Int. Ed. 2024, 63, e202402458;
- 15bM.-Y. Yang, S.-B. Zhang, M. Zhang, Z.-H. Li, Y.-F. Liu, X. Liao, M. Lu, S.-L. Li, Y.-Q. Lan, J. Am. Chem. Soc. 2024, 146, 3396–3404.
- 16Q. Li, J.-N. Chang, Z. Wang, M. Lu, C. Guo, M. Zhang, T.-Y. Yu, Y. Chen, S.-L. Li, Y.-Q. Lan, J. Am. Chem. Soc. 2023, 145, 23167–23175.
- 17J. Zhang, X. Liu, Y. Ji, X. Liu, D. Su, Z. Zhuang, Y.-C. Chang, C.-W. Pao, Q. Shao, Z. Hu, X. Huang, Nat. Commun. 2023, 14, 1761.
- 18L. Jiang, Y. Tian, T. Sun, Y. Zhu, H. Ren, X. Zou, Y. Ma, K. R. Meihaus, J. R. Long, G. Zhu, J. Am. Chem. Soc. 2018, 140, 15724–15730.
- 19
- 19aZ. Chen, Q. Zhang, W. Chen, J. Dong, H. Yao, X. Zhang, X. Tong, D. Wang, Q. Peng, C. Chen, W. He, Y. Li, Adv. Mater. 2017, 30, 1704720;
- 19bZ. Chen, Q. Zhang, W. Chen, J. Dong, H. Yao, X. Zhang, X. Tong, D. Wang, Q. Peng, C. Chen, W. He, Y. Li, Adv. Mater. 2017, 30, 1704720.
- 20
- 20aK. Sivula, R. van de Krol, Nat. Rev. Mater. 2016, 1 15010;
- 20bI. Roger, M. A. Shipman, M. D. Symes, Nat. Chem. Rev. 2017, 1, 0003.
- 21
- 21aZ. Zhao, H. Ren, D. Yang, Y. Han, J. Shi, K. An, Y. Chen, Y. Shi, W. Wang, J. Tan, X. Xin, Y. Zhang, Z. Jiang, ACS Catal. 2021, 11, 9986–9995;
- 21bN. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu, C. Gao, W. Ye, Z. Qi, H. Ju, C. Wang, X. Wu, L. Song, J. Zhu, Y. Xiong, J. Am. Chem. Soc. 2018, 140, 9434–9443;
- 21cC. Mao, L. Yu, J. Li, J. Zhao, L. Zhang, Appl. Catal. B 2018, 224, 612–620.
- 22P. Li, Z. Zhou, Q. Wang, M. Guo, S. Chen, J. Low, R. Long, W. Liu, P. Ding, Y. Wu, Y. Xiong, J. Am. Chem. Soc. 2020, 142, 12430–12439.
- 23
- 23aJ. Zhou, B. He, P. Huang, D. Wang, Z. Zhuang, J. Xu, C. Pan, Y. Dong, D. Wang, Y. Wang, H. Huang, J. Zhang, Y. Zhu, Angew. Chem. Int. Ed. 2024, e202418459;
- 23bY. Wang, J. Zhang, J. Zhao, Y. Wei, S. Chen, H. Zhao, Y. Su, S. Ding, C. Xiao, ACS Catal. 2024, 14, 3457–3465.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.