Highly Selective Construction of Unique Cyclic [4]Catenanes Induced by Multiple Noncovalent Interactions
Corresponding Author
Li-Long Dang
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorJie Zheng
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
College of materials and Chemical Engineering, China Three Gorges University, Yichang, 443002 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDan Tian
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorYin-Hang Chai
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
Search for more papers by this authorTian-Tian Wu
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 P. R. China
Search for more papers by this authorJian-Xin Yang
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
Search for more papers by this authorPeng Wang
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
Search for more papers by this authorYing Zhao
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
Search for more papers by this authorFrancisco Aznarez
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Lu-Fang Ma
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
College of materials and Chemical Engineering, China Three Gorges University, Yichang, 443002 P. R. China
Search for more papers by this authorCorresponding Author
Li-Long Dang
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorJie Zheng
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
College of materials and Chemical Engineering, China Three Gorges University, Yichang, 443002 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDan Tian
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorYin-Hang Chai
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
Search for more papers by this authorTian-Tian Wu
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 P. R. China
Search for more papers by this authorJian-Xin Yang
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
Search for more papers by this authorPeng Wang
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
Search for more papers by this authorYing Zhao
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
Search for more papers by this authorFrancisco Aznarez
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Lu-Fang Ma
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
College of materials and Chemical Engineering, China Three Gorges University, Yichang, 443002 P. R. China
Search for more papers by this authorAbstract
The synthesis of high-ordered mechanically interlocked supramolecular structures is an extremely challenging topic. Only two linear [4]catenanes have been reported so far and there is no defined strategy to obtain cyclic [4]catenane. Herein, two unprecedented cyclic [4]catenanes, 1 and 2, were prepared in high yields. The syntheses rely on the strategic selection of naphthalenediimide (NDI) based Cp*Rh/Ir building blocks E1/E2 (Cp*=pentamethyl-cyclopentadienyl) and nonlinear diimidazole ligand precursor L1, exhibiting large conjugate plane, appropriate coordination angles, and freely rotating imidazole units, thereby enabling multiple π⋅⋅⋅π stacking interactions to maintain the supramolecular structures. The use of other Cp*Rh building blocks E3, E4 or E5 featuring slightly shorter metal-to-metal distances than E1/E2 and different chemical properties led to the formation of a complex 3 and two metallamacrocycles 4 or 5, respectively. The structures of these assemblies were confirmed by X-ray crystallographic analysis, ESI-TOF-MS and NMR spectroscopy. Complex 1, exhibiting a broad-band absorption in the UV/Vis to NIR regions and a remarkable photothermal conversion was thereafter used to build the new 1 membrane. The solar power-induced water steam generation performance of 1 membrane was investigated, reaching a value of 2.37 kg ⋅ m−2 ⋅ h−1, making it suitable for collection of fresh water via desalination and wastewater.
Conflict of Interests
The authors declare no competing financial interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202422444-sup-0001-misc_information.pdf6.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. F. Stoddart, Angew. Chem. Int. Ed. 2017, 56, 11094–11125;
- 1bJ. P. Sauvage, Angew. Chem. Int. Ed. 2017, 56, 11080–11093;
- 1cE. G. Percástegui, T. K. Ronson, J. R. Nitschke, Chem. Rev. 2020, 120, 13480–13544.
- 2
- 2aM. Fujita, Acc. Chem. Res. 1999, 32, 53–61;
- 2bJ. D. Crowley, S. M. Goldup, A. L. Lee, D. A. Leigh, R. T. McBurney, Chem. Soc. Rev. 2009, 38, 1530–1541;
- 2cT. K. Ronson, Y. J. Wang, K. Baldridge, J. S. Siegel, J. R. Nitschke, J. Am. Chem. Soc. 2020, 142, 10267–10272;
- 2dK. J. Caprice, D. Pál, C. Besnard, B. Galmés, A. Frontera, F. B. L. Cougnon, J. Am. Chem. Soc. 2021, 143, 11957–11962;
- 2eB. Lan, R. Y. Zhang, J. F. Yan, Y. F. Yuan, Y. M. Li, Chin. J. Struct. Chem. 2023, 42, 100008;
- 2fY. Zhao, Y. H. Chai, T. Chen, J. Zheng, T. T. Li, F. Aznarezc, L. L. Dang, L. F. Ma, Chin. Chem. Lett. 2024, 35, 109298.
- 3
- 3aH. Ju, J. K. Clegg, K.-M. Park, L. F. Lindoy, S. S. Lee, J. Am. Chem. Soc. 2015, 137, 9535–9538;
- 3bJ. E. M. Lewis, R. J. Bordoli, M. Denis, C. J. Fletcher, M. Galli, E. A. Neal, E. M. Rochette, S. M. Goldup, Chem. Sci. 2016, 7, 315–328;
- 3cE. M. G. Jamieson, F. Modicom, S. M. Goldup, Chem. Soc. Rev. 2018, 47, 5266–5311;
- 3dC. Y. Tsai, H. T. Cheng, S. H. Chiu, Angew. Chem. Int. Ed. 2023, 62, e202308974.
- 4
- 4aH. N. Zhang, W. X. Gao, Y. J. Lin, G.-X. Jin, J. Am. Chem. Soc. 2019, 141, 16057–16063;
- 4bH. N. Zhang, H. J. Feng, Y. J. Lin, G.-X. Jin, J. Am. Chem. Soc. 2023, 145, 4746–4756.
- 5
- 5aR. S. Forgan, J. P. Sauvage, J. F. Stoddart, Chem. Rev. 2011, 111, 5434–5464;
- 5bJ. F. Ayme, J. E. Beves, C. J. Campbell, D. A. Leigh, Chem. Soc. Rev. 2013, 42, 1700–1712;
- 5cJ. P. Carpenter, C. T. McTerna, J. L. Greenfield, R. Lavendomme, T. K. Ronson, J. R. Nitschke, Chem. 2021, 7, 1407–1409;
- 5dQ. S. Mu, X. Gao, Z. Cui, Y. J. Lin, G.-X. Jin, Sci. China Chem. 2023, 63, 2885–2891.
- 6
- 6aT. Castle, M. E. Evans, S. T. Hyde, New J. Chem. 2008, 32, 1484–1492;
- 6bL. L. Dang, T. T. Zhang, T. Chen, Y. Zhao, F. Aznarez, L. F. Ma, G.-X. Jin, Angew. Chem. Int. Ed. 2023, 62, e202301516;
- 6cL. X. Cai, D. N. Yan, P. M. Cheng, J. J. Xuan, S. C. Li, L. P. Zhou, C. B. Tian, Q. F. Sun, J. Am. Chem. Soc. 2021, 143, 2016–2024.
- 7
- 7aF. B. L. Cougnon, N. A. Jenkins, G. D. Pantoş, J. K. M. Sanders, Angew. Chem. Int. Ed. 2012, 51, 1443–1447;
- 7bH. Iwamoto, W. Takizawa, K. Itoh, T. Hagiwara, E. Tayama, E. Hasegawa, T. Haino, J. Org. Chem. 2013, 78, 5205–5217;
- 7cC. Lincheneau, B. Jean-Denis, T. Gunnlaugsson, Chem. Commun. 2014, 50, 2857–2860.
- 8
- 8aX. Gao, Z. Cui, Y. R. Shen, D. Liu, Y. J. Lin, G.-X. Jin, J. Am. Chem. Soc. 2021, 143, 17833–17842;
- 8bT. Chen, Y. Zhao, L. L. Dang, T. T. Zhang, X. L. Lu, F. Aznarez, L. F. Ma, J. Am. Chem. Soc. 2023, 145, 18036–18047.
- 9
- 9aS. S.-Y. Chui, R. Chen, C.-M. Che, Angew. Chem. Int. Ed. 2006, 45, 1621–1624;
- 9bR. Barat, T. Legigan, I. Tranoy-Opalinski, B. Renoux, E. Péraudeau, J. Clarhaut, P. Poinot, A. E. Fernandes, V. Aucagne, D. A. Leigh, S. Papot, Chem. Sci. 2015, 6, 2608–2613.
- 10
- 10aT. Ogoshi, D. Yamafuji, T. Yamagishi, A. M. Brouwer, Chem. Commun. 2013, 49, 5468–5470;
- 10bB. Delavaux-Nicot, H. B. Aziza, I. Nierengarten, T. M. N. Trinh, E. Meichsner, M. Chessé, M. Holler, R. Abidi, E. Mai-sonhaute, J. F. Nierengarten, Chem. Eur. J. 2018, 24, 133–140;
- 10cN. Yesilgul, O. Seven, R. Guliyev, E. U. Akkaya, J. Org. Chem. 2018, 83, 13228–13232.
- 11
- 11aV. Marcos, A. J. Stephens, J. Jaramillo-Garcia, A. L. Nussbaumer, S. L. Woltering, A. Valero, J. F. Lemonnier, I. J. Vitorica-Yrezabal, D. A. Leigh, Science 2016, 352, 1555–1559;
- 11bG. D. Bo, M. A. Y. Gall, S. Kuschel, J. D. Winter, P. Gerbaux, D. A. Leigh, Nat. Nanotechnol. 2018, 13, 381–385;
- 11cN. Leigh, X. H. Zhu, D. Jansen, A. Huber, C. G. Daniliuc, S. Grimme, J. Niemeyer, Angew. Chem. Int. Ed. 2020, 59, 5102–5107.
- 12
- 12aM. Baroncini, S. Silvi, A. Credi, Chem. Rev. 2020, 120, 200–268;
- 12bJ. X. Liu, K. Chen, C. Redshaw, Chem. Soc. Rev. 2023, 52, 1428–1455.
- 13
- 13aK. S. Chichak, S. J. Cantrill, A. R. Pease, S. H. Chiu, G. W. V. Cave, J. L. Atwood, J. F. Stoddart, Science 2004, 304, 1308–1312;
- 13bH. N. Zhang, W. B. Yu, Y. J. Lin, G.-X. Jin, Angew. Chem. Int. Ed. 2021, 60, 15466–15471.
- 14
- 14aJ. Singh, D. H. Kim, E. H. Kim, N. Singh, H. Kim, R. Hadiputra, J. Jung, K. W. Chi, Chem. Commun. 2019, 55, 6866–6869;
- 14bD. Liu, Y. Lu, Y. J. Lin, G.-X. Jin, Chem. Eur. J. 2019, 25, 14785–14789.
- 15
- 15aC. Lincheneau, B. Jean-Denis, T. Gunnlaugsson, Chem. Commun. 2014, 50, 2857–2860;
- 15bR. Zhu, J. Lübben, B. Dittrich, G. H. Clever, Angew. Chem. Int. Ed. 2015, 54, 2796–2800;
- 15cC. S. Wood, T. K. Ronson, A. M. Belenguer, J. J. Holstein, J. R. Nitschke, Nat. Chem. 2015, 7, 354–358;
- 15dJ. Singh, D. H. Kim, E. H. Kim, H. Kim, R. Had-iputra, J. Jung, K. W. Chi, J. Am. Chem. Soc. 2020, 142, 9327–9336;
- 15eT. Feng, X. Li, Y. Y. An, S. Bai, L. Y. Sun, Y. Li, Y. Y. Wang, Y. F. Han, Angew. Chem. Int. Ed. 2020, 59, 13516–13520.
- 16
- 16aT. Sawada, M. Yamagami, K. Ohara, K. Yamaguchi, M. Fujita, Angew. Chem. Int. Ed. 2016, 55, 4519–4522;
- 16bT. Sawada, A. Saito, K. Tamiya, K. Shimokawa, Y. Hisada, M. Fujita, Nat. Commun. 2019, 10, 921.
- 17Z. Cui, X. Gao, Y. J. Lin, G.-X. Jin, J. Am. Chem. Soc. 2022, 144, 2379–2386.
- 18
- 18aY. Lu, D. Liu, Y. J. Lin, Z. H. Li, F. E. Hahn, G.-X. Jin, J. Am. Chem. Soc. 2021, 143, 12404–12411;
- 18bW. L. Shan, H. H. Hou, N. Si, C. X. Wang, G. Z. Yuan, X. Gao, G.-X. Jin, Angew. Chem. Int. Ed. 2024, 63, e202402198;
- 18cY. H. Chai, L. L. Dang, Chin. J. Struct. Chem. 2024, 43, 100322.
- 19W. X. Gao, H. J. Feng, B. B. Guo, Y. Lu, G.-X. Jin, Chem. Rev. 2020, 120, 6288–6325.
- 20H. T. Tang, H. N. Zhang, X. Gao, Y. Zou, G.-X. Jin, J. Am. Chem. Soc. 2024, 146, 16020–16027.
- 21L. L. Dang, H. J. Feng, Y. J. Lin, G.-X. Jin, J. Am. Chem. Soc. 2020, 142, 18946–18954.
- 22
- 22aC. Schouwey, J. J. Holstein, R. Scopelliti, K. O. Zhurov, K. O. Nagornov, Y. O. Tsybin, O. S. Smart, G. Bricogne, K. Severin, Angew. Chem. Int. Ed. 2014, 53, 11261–11265;
- 22bZ. Cui, Y. Lu, X. Gao, H. J. Feng, G.-X. Jin, J. Am. Chem. 2020, 142, 13667–13671.
- 23
- 23aH. N. Zhang, Y. J. Lin, G.-X. Jin, J. Am. Chem. Soc. 2021, 143, 1119–1125;
- 23bX. Gao, D. Liu, H. N. Zhang, G.-X. Jin, Sci. China Chem. 2024, 67, 3652–3656.
- 24W. B. Jennings, B. M. Farrell, J. F. Malone, Acc. Chem. Res. 2001, 34, 885–894.
- 25J. Pawliszyn, M. M. Szczesniak, S. Scheiner, J. Phys. Chem. C. 1984, 88, 1726–1730.
- 26C. Wang, K. Xu, G. Shi, D. Wei, Adv. Energy Mater. 2023, 13, 2300134.
- 27Y. Peng, X. Wei, Y. Wang, W. Li, S. Zhang, J. Jin, ACS Nano. 2022, 16, 8329–8337.
- 28X. Yan, S. Lyu, X. Q. Xu, W. Chen, P. Shang, Z. Yang, G. Zhang, W. Chen, Y. Wang, L. Chen, Angew. Chem. Int. Ed. 2022, 134, e202201900.
- 29Z. Cui, J. Wu, H. Li, Y. Xu, T. Wu, L. Kang, Q. Huang, Y. Cai, J. Li, D. Tian, Sci. China Chem. 2024, 67, 2111–2120.
- 30CCDC 2372442 (1), 2372443 (2), 2372444 (3), 2372445 (4), 2372446 (5) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.