CO2 Reduction at a Borane-Modified Iron Complex: A Secondary Coordination Sphere Strategy
This article relates to:
-
Marcus W. Drover
- Volume 137Issue 9Angewandte Chemie
- First Published online: February 5, 2025
Connor S. Durfy
Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N8K 3G6 Canada
Search for more papers by this authorJoseph A. Zurakowski
Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N8K 3G6 Canada
Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4 Canada
Search for more papers by this authorCorresponding Author
Dr. Marcus W. Drover
Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N8K 3G6 Canada
Search for more papers by this authorConnor S. Durfy
Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N8K 3G6 Canada
Search for more papers by this authorJoseph A. Zurakowski
Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N8K 3G6 Canada
Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4 Canada
Search for more papers by this authorCorresponding Author
Dr. Marcus W. Drover
Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N8K 3G6 Canada
Search for more papers by this authorAbstract
This work addresses fundamental questions that deepen our understanding of secondary coordination sphere effects on carbon dioxide (CO2) reduction using derivatized hydride analogues of the type, [Cp*Fe(diphosphine)H] (Cp* = C5Me5−) – a well-studied family of organometallic complex – as models. More precisely, we describe the general reactivity of [(Cp*-BR2)Fe(diphosphine)H], which contains an intramolecularly positioned Lewis acid, and its cooperative reactivity with CO2. Control experiments underscore the critical nature of borane incorporation for transforming CO2 to reduced products, a reaction that does not occur for unfunctionalized [Cp*Fe(diphosphine)H]. Additional experiments highlight relevance of borane hybridization and substituent effects. Mechanistic studies performed in the presence and absence of CO2 emphasize the significance of carbonyl substrate to catalyst longevity. Lessons from these reactions were also transferable – with such borane-containing complexes enabling the chemoselective reduction of aldehydes in the presence of alkenes. These findings provide valuable insights into metal-ligand cooperative design strategies for carbonyl reduction and illustrate the versatility of intramolecularly positioned Lewis acids for otherwise challenging chemical transformations.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202421599-sup-0001-misc_information.pdf12.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. J. Wuebbles, D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, T. K. Maycock, Executive Summary. Climate Science Special Report: Fourth National Climate Assessment, Volume I, U. S. Global Change Research Program, 2017.
- 2S. Chu, A. Majumdar, Nature 2012, 488, 294.
- 3D. U. Nielsen, X.-M. Hu, K. Daasbjerg, T. Skrydstrup, Nat. Catal. 2018, 1, 244.
- 4Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933.
- 5E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazábal, J. Pérez-Ramírez, Energy Environ. Sci. 2013, 6, 3112.
- 6M. Pérez-Jiménez, H. Corona, F. de la Cruz-Martínez, J. Campos, Chem. Eur. J. 2023, 29, e202301428.
- 7G. A. Olah, Angew. Chem. Int. Ed. 2005, 44, 2636.
- 8Y. Chen, H. Li, W. Zhao, W. Zhang, J. Li, W. Li, X. Zheng, W. Yan, W. Zhang, J. Zhu, R. Si, J. Zeng, Nat. Commun. 2019, 10, 1885.
- 9R. Bonetto, F. Crisanti, A. Sartorel, ACS Omega 2020, 5, 21309.
- 10W.-H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck, E. Fujita, Chem. Rev. 2015, 115, 12936.
- 11J. Bi, P. Hou, F.-W. Liu, P. Kang, ChemSusChem 2019, 12, 2195.
- 12J. D. Erickson, A. Z. Preston, J. C. Linehan, E. S. Wiedner, ACS Catal. 2020, 10, 7419.
- 13R. C. Cammarota, M. V. Vollmer, J. Xie, J. Ye, J. C. Linehan, S. A. Burgess, A. M. Appel, L. Gagliardi, C. C. Lu, J. Am. Chem. Soc. 2017, 139, 14244.
- 14F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C. F. Elkjær, J. S. Hummelshøj, S. Dahl, I. Chorkendorff, J. K. Nørskov, Nat. Chem. 2014, 6, 320.
- 15J. C. Tsai, K. M. Nicholas, J. Am. Chem. Soc. 1992, 114, 5117.
- 16J. R. Prat, C. A. Gaggioli, R. C. Cammarota, E. Bill, L. Gagliardi, C. C. Lu, Inorg. Chem. 2020, 59, 14251.
- 17J.-H. Jeoung, H. Dobbek, Science 2007, 318, 1461.
- 18M. Zhao, H.-B. Wang, L.-N. Ji, Z.-W. Mao, Chem. Soc. Rev. 2013, 42, 8360.
- 19J. Ruickoldt, Y. Basak, L. Domnik, J.-H. Jeoung, H. Dobbek, ACS Catal. 2022, 12, 13131.
- 20C. S. Durfy, J. A. Zurakowski, M. W. Drover, ChemSusChem 2024, 17, e202400039.
- 21J. A. Zurakowski, B. J. H. Austen, M. W. Drover, Trends Chem. 2022, 4, 331.
- 22M. W. Drover, Chem. Soc. Rev. 2022, 51, 1861.
- 23M. W. Drover, J. A. Love, L. L. Schafer, Chem. Soc. Rev. 2017, 46, 2913.
- 24C. Costentin, S. Drouet, M. Robert, J.-M. Savéant, Science 2012, 338, 90.
- 25I. Bhugun, D. Lexa, J.-M. Savéant, J. Phys. Chem. 1996, 100, 19981.
- 26I. Bhugun, D. Lexa, J.-M. Savéant, J. Am. Chem. Soc. 1996, 118, 1769.
- 27J. A. Buss, D. G. VanderVelde, T. Agapie, J. Am. Chem. Soc. 2018, 140, 10121.
- 28A. J. M. Miller, J. A. Labinger, J. E. Bercaw, J. Am. Chem. Soc. 2008, 130, 11874.
- 29A. Maity, T. S. Teets, Chem. Rev. 2016, 116, 8873.
- 30S. Bontemps, Coord. Chem. Rev. 2016, 308, 117.
- 31A. Simonneau, R. Turrel, L. Vendier, M. Etienne, Angew. Chem. Int. Ed. 2017, 56, 12268.
- 32M. Devillard, R. Declercq, E. Nicolas, A. W. Ehlers, J. Backs, N. Saffon-Merceron, G. Bouhadir, J. C. Slootweg, W. Uhl, D. Bourissou, J. Am. Chem. Soc. 2016, 138, 4917.
- 33J. P. Krogman, B. M. Foxman, C. M. Thomas, J. Am. Chem. Soc. 2011, 133, 14582.
- 34H. Corona, M. Pérez-Jiménez, F. de la Cruz-Martínez, I. Fernández, J. Campos, Angew. Chem. Int. Ed. 2022, 61, e202207581.
- 35J. R. Pinkes, B. D. Steffey, J. C. Vites, A. R. Cutler, Organometallics 1994, 13, 21.
- 36T. A. Hanna, A. M. Baranger, R. G. Bergman, J. Am. Chem. Soc. 1995, 117, 11363.
- 37D. Hong, T. Kawanishi, Y. Tsukakoshi, H. Kotani, T. Ishizuka, T. Kojima, J. Am. Chem. Soc. 2019, 141, 20309.
- 38W. H. Bernskoetter, N. Hazari, Acc. Chem. Res. 2017, 50, 1049.
- 39E. Barwa, T. F. Pascher, M. Ončák, C. van der Linde, M. K. Beyer, Angew. Chem. Int. Ed. 2020, 59, 7467.
- 40K. Fujiwara, S. Yasuda, T. Mizuta, Organometallics 2014, 33, 6692.
- 41I. Knopf, C. C. Cummins, Organometallics 2015, 34, 1601.
- 42M.-A. Courtemanche, M.-A. Légaré, L. Maron, F.-G. Fontaine, J. Am. Chem. Soc. 2014, 136, 10708.
- 43C. Jarava-Barrera, S. Desmons, D. Zhang, L. Vendier, Q. Xu, N. Ma, S. Bontemps, J. Org. Chem. 2024, 89, 12187.
- 44A. J. M. Miller, J. A. Labinger, J. E. Bercaw, Organometallics 2011, 30, 4308.
- 45A. Abiko, Org. Synth. 2002, 79, 103.
- 46J. A. Zurakowski, M. W. Drover, Chem. Commun. 2023, 59, 11349.
- 47J. A. Zurakowski, C. S. Durfy, N. B. Stocek, G. Fanchini, M. W. Drover, Chem. Sci. 2024, 15, 10359.
- 48Y. Zhang, A. D. MacIntosh, J. L. Wong, E. A. Bielinski, P. G. Williard, B. Q. Mercado, N. Hazari, W. H. Bernskoetter, Chem. Sci. 2015, 6, 4291.
- 49A.-K. Kreyenschmidt, M. John, D. Stalke, Organometallics 2023, 42, 2957.
- 50K. Ito, H. J. Bernstein, Can. J. Chem. 1956, 34, 170.
- 51M. Viertelhaus, P. Adler, R. Clérac, C. E. Anson, A. K. Powell, Eur. J. Inorg. Chem. 2005, 2005, 692.
- 52I. P. Oliveri, G. Maccarrone, S. Di Bella, J. Org. Chem. 2011, 76, 8879.
- 53G. Durin, R. M. Romero, T. Godou, C. Chauvier, P. Thuéry, E. Nicolas, T. Cantat, Catal. Sci. Technol. 2024, 14, 1848.
- 54F. Zhang, J. Jia, S. Dong, W. Wang, C.-H. Tung, Organometallics 2016, 35, 1151.
- 55S. Ilic, A. Alherz, C. B. Musgrave, K. D. Glusac, Chem. Soc. Rev. 2018, 47, 2809.
- 56E. A. Patrick, W. E. Piers, Chem. Commun. 2020, 56, 841.
- 57J. A. Zurakowski, B. J. H. Austen, M. W. Drover, Organometallics 2021, 40, 2450.
- 58I. Peuser, R. C. Neu, X. Zhao, M. Ulrich, B. Schirmer, J. A. Tannert, G. Kehr, R. Fröhlich, S. Grimme, G. Erker, D. W. Stephan, Chem. Eur. J. 2011, 17, 9640.
- 59M. W. Drover, L. L. Schafer, J. A. Love, Angew. Chem. Int. Ed. 2016, 55, 3181.
- 60S. Chakraborty, J. Zhang, J. A. Krause, H. Guan, J. Am. Chem. Soc. 2010, 132, 8872.
- 61L. J. Murphy, H. Hollenhorst, R. McDonald, M. Ferguson, M. D. Lumsden, L. Turculet, Organometallics 2017, 36, 3709.
- 62S. Kostera, S. Weber, I. Blaha, M. Peruzzini, K. Kirchner, L. Gonsalvi, ACS Catal. 2023, 13, 5236.
- 63W. Huadsai, M. Westerhausen, S. Bontemps, Organometallics 2023, 42, 2921.
- 64T. F. C. Cruz, V. Loupy, L. F. Veiros, Inorg. Chem. 2024, 63, 8244.
- 65S. Desmons, Y. Zhou, D. Zhang, C. Jarava-Barrera, A. Coffinet, A. Simonneau, L. Vendier, G. Luo, S. Bontemps, Eur. J. Org. Chem. 2023, 26, e202300525.
- 66G. J. McGarvey, J. S. Bajwa, Tetrahedron Lett. 1985, 26, 6297.
- 67P. G. Gassman, S. J. Burns, K. B. Pfister, J. Org. Chem. 1993, 58, 1449.
- 68J. A. Zurakowski, K. R. Brown, M. W. Drover, Inorg. Chem. 2023, 62, 7053.
- 69F. Neese, WIREs Comput. Mol. Sci. 2022, 12, e1606.
- 70S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
- 71S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 72F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- 73F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057.
- 74C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, F. Neese, J. Chem. Phys. 2016, 144, 024109.
- 75C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, J. Chem. Phys. 2013, 139, 134101.
- 76C. Riplinger, F. Neese, J. Chem. Phys. 2013, 138, 034106.
- 77D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta 1990, 77, 123.
- 78G. Knizia, J. E. M. N. Klein, Angew. Chem. Int. Ed. 2015, 54, 5518.
- 79G. Knizia, J. Chem. Theory Comput. 2013, 9, 4834.
- 80A. L. Spek, Acta Crystallogr. 2009, D65, 148.
- 81G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3.
- 82G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.
- 83C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Crystallogr. 2008, 41, 466.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.