Active Hydroxyl-Mediated Preferential Cleavage of Carbon-Carbon Bonds in Electrocatalytic Glycerol Oxidation
Qiang Zhang
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot, 010020 P. R. China
These authors contributed equally to this work.
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (lead), Writing - original draft (lead)
Search for more papers by this authorXiaojing Zhang
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot, 010020 P. R. China
These authors contributed equally to this work.
Contribution: Conceptualization (supporting), Data curation (supporting), Formal analysis (supporting), Writing - original draft (supporting)
Search for more papers by this authorCorresponding Author
Prof. Baocang Liu
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot, 010020 P. R. China
Contribution: Conceptualization (lead), Funding acquisition (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorPeng Jing
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot, 010020 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorXuan Xu
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot, 010020 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorDr. Haigang Hao
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot, 010020 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Rui Gao
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot, 010020 P. R. China
Contribution: Funding acquisition (supporting), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Jun Zhang
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot, 010020 P. R. China
School of Chemistry and Environmental Science, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot, 010022 P. R. China
Contribution: Conceptualization (equal), Data curation (equal), Funding acquisition (lead), Writing - review & editing (equal)
Search for more papers by this authorQiang Zhang
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot, 010020 P. R. China
These authors contributed equally to this work.
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (lead), Writing - original draft (lead)
Search for more papers by this authorXiaojing Zhang
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot, 010020 P. R. China
These authors contributed equally to this work.
Contribution: Conceptualization (supporting), Data curation (supporting), Formal analysis (supporting), Writing - original draft (supporting)
Search for more papers by this authorCorresponding Author
Prof. Baocang Liu
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot, 010020 P. R. China
Contribution: Conceptualization (lead), Funding acquisition (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorPeng Jing
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot, 010020 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorXuan Xu
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot, 010020 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorDr. Haigang Hao
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot, 010020 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Rui Gao
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot, 010020 P. R. China
Contribution: Funding acquisition (supporting), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Jun Zhang
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot, 010020 P. R. China
School of Chemistry and Environmental Science, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot, 010022 P. R. China
Contribution: Conceptualization (equal), Data curation (equal), Funding acquisition (lead), Writing - review & editing (equal)
Search for more papers by this authorAbstract
Electrocatalytic glycerol oxidation reaction (GOR) to produce high-value formic acid (FA) is hindered by high formation potential of active species and sluggish C−C bond cleavage kinetics. Herein, Ni single-atom (NiSA) and Co single-atom (CoSA) dual sites anchored on nitrogen-doped carbon nanotubes embedded with Ni0.1Co0.9 alloy (Ni0.1Co0.9@NiSACoSA-NCNTs) are constructed for electrochemical GOR. Remarkably, it can reach 10 mA cm−2 at a low potential of 1.15 V versus the reversible hydrogen electrode (vs. RHE) and realize a high formate selectivity of 93.27 % even at high glycerol conversion of 98.81 % at 1.45 V vs. RHE. The GOR mechanism and pathway are systematically elucidated via experimental analyses and theoretical calculations. It is revealed that the active hydroxyl (*OH) can be produced during the GOR. The NiSA, CoSA, and Ni0.1Co0.9 synergistically optimizes the electronic structure of CoSA active sites, reducing the energy barriers of *OH-mediated cleavage of C−C bonds and dehydrogenation of C1 intermediates. This decreases the number of reaction intermediates and reaction steps of GOR-to-FA, thus increasing the formate production efficiency. After coupling GOR with hydrogen evolution reaction in a membrane electrode assembly cell, 14.26 g of formate and 23.10 L of H2 are produced at 100 mA cm−2 for 108 h.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420942-sup-0001-misc_information.pdf8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. Tian, R. Dorakhan, J. Wicks, Z. Chen, K.-S. Choi, N. Singh, J. A. Schaidle, A. Holewinski, A. Vojvodic, D. G. Vlachos, L. J. Broadbelt, E. H. Sargent, Nat. Catal. 2024, 7, 350–360;
- 1bA. Badalyan, S. S. Stahl, Nature 2016, 535, 406–410.
- 2
- 2aM. R. Anuar, A. Z. Abdullah, Renewable Sustainable Energy Rev. 2016, 58, 208–223;
- 2bA. M. Hilbrands, M. K. Goetz, K.-S. Choi, J. Am. Chem. Soc. 2023, 145, 25382–25391.
- 3J.-A. Lin, I. Roh, P. Yang, J. Am. Chem. Soc. 2023, 145, 12987–12991.
- 4L. Xiong, Z. Yu, H. Cao, W. Guan, Y. Su, X. Pan, L. Zhang, X. Liu, A. Wang, J. Tang, Angew. Chem. Int. Ed. 2024, 63, e202318461.
- 5L. Shen, L. Sun, M. Douthwaite, O. Akdim, S. Taylor, G. J. Hutchings, ACS Catal. 2024, 14, 11343–11351.
- 6D. M. Morales, D. Jambrec, M. A. Kazakova, M. Braun, N. Sikdar, A. Koul, A. C. Brix, S. Seisel, C. Andronescu, W. Schuhmann, ACS Catal. 2022, 12, 982–992.
- 7Z. Xia, C. Ma, Y. Fan, Y. Lu, Y.-C. Huang, Y. Pan, Y. Wu, Q. Luo, Y. He, C.-L. Dong, S. Wang, Y. Zou, ACS Catal. 2024, 14, 1930–1938.
- 8Z. Li, Y. Chen, S. Ji, Y. Tang, W. Chen, A. Li, J. Zhao, Y. Xiong, Y. Wu, Y. Gong, T. Yao, W. Liu, L. Zheng, J. Dong, Y. Wang, Z. Zhuang, W. Xing, C.-T. He, C. Peng, W.-C. Cheong, Q. Li, M. Zhang, Z. Chen, N. Fu, X. Gao, W. Zhu, J. Wan, J. Zhang, L. Gu, S. Wei, P. Hu, J. Luo, J. Li, C. Chen, Q. Peng, X. Duan, Y. Huang, X.-M. Chen, D. Wang, Y. Li, Nat. Chem. 2020, 12, 764–772.
- 9K. Wang, Z. Guo, M. Zhou, Y. Yang, L. Li, H. Li, R. Luque, S. Saravanamurugan, J. Energy Chem. 2024, 91, 542–578.
- 10D. A. Bulushev, J. R. H. Ross, ChemSusChem 2018, 11, 821–836.
- 11
- 11aH. Sheng, A. N. Janes, R. D. Ross, H. Hofstetter, K. Lee, J. R. Schmidt, S. Jin, Nat. Catal. 2022, 5, 716–725;
- 11bM. Kumar, B. Meena, A. Yu, C. Sun, S. Challapalli, Green Chem. 2023, 25, 8411–8443.
- 12
- 12aS. Verma, S. Lu, P. J. A. Kenis, Nat. Energy 2019, 4, 466–474;
- 12bS. Li, P. Ma, C. Gao, L. Liu, X. Wang, M. Shakouri, R. Chernikov, K. Wang, D. Liu, R. Ma, J. Wang, Energy Environ. Sci. 2022, 15, 3004–3014;
- 12cX. Yu, R. B. Araujo, Z. Qiu, E. Campos dos Santos, A. Anil, A. Cornell, L. G. M. Pettersson, M. Johnsson, Adv. Energy Mater. 2022, 12, 2103750.
- 13
- 13aY. Li, X. Wei, R. Pan, Y. Wang, J. Luo, L. Li, L. Chen, J. Shi, Energy Environ. Sci. 2024, 17, 4205–4215;
- 13bY. Zhu, Q. Qian, Y. Chen, X. He, X. Shi, W. Wang, Z. Li, Y. Feng, G. Zhang, F. Cheng, Adv. Funct. Mater. 2023, 33, 2300547;
- 13cZ. Zhao, X. Shen, X. Luo, M. Chen, M. Zhang, R. Yu, R. Jin, H. Zheng, Adv. Energy Mater. 2024, 14, 2400851.
- 14Z. He, J. Hwang, Z. Gong, M. Zhou, N. Zhang, X. Kang, J. W. Han, Y. Chen, Nat. Commun. 2022, 13, 3777.
- 15S. Wang, Y. Yan, Y. Du, Y. Zhao, T. Li, D. Wang, P. Schaaf, X. Wang, Adv. Funct. Mater. 2024, 34, 2404290.
- 16J. Li, H. Li, K. Fan, J. Y. Lee, W. Xie, M. Shao, Chem Catal. 2023, 3, 100638.
- 17W. Luo, H. Tian, Q. Li, G. Meng, Z. Chang, C. Chen, R. Shen, X. Yu, L. Zhu, F. Kong, X. Cui, J. Shi, Adv. Funct. Mater. 2024, 34, 2306995.
- 18C. Li, H. Li, B. Zhang, H. Li, Y. Wang, X. Wang, P. Das, Y. Li, X. Wu, Y. Li, Y. Cui, J. Xiao, Z.-S. Wu, Angew. Chem. Int. Ed. 2024, 63,e202411542.
- 19L. Ma, Y. Miao, J. Yang, Y. Fu, Y. Yan, Z. Zhang, Z. Li, M. Shao, Adv. Energy Mater. 2024, 14, 2401061.
- 20
- 20aS.-K. Geng, Y. Zheng, S.-Q. Li, H. Su, X. Zhao, J. Hu, H.-B. Shu, M. Jaroniec, P. Chen, Q.-H. Liu, S.-Z. Qiao, Nat. Energy 2021, 6, 904–912;
- 20bX. Zheng, J. Yang, P. Li, Z. Jiang, P. Zhu, Q. Wang, J. Wu, E. Zhang, W. Sun, S. Dou, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2023, 62, e202217449;
- 20cJ. Li, X. Meng, X. Song, J. Qi, F. Liu, X. Xiao, Y. Du, G. Xu, Z. Jiang, S. Ye, S. Huang, J. Qiu, Adv. Funct. Mater. 2024, 34, 2316718.
- 21H. Yan, B. Liu, X. Zhou, F. Meng, M. Zhao, Y. Pan, J. Li, Y. Wu, H. Zhao, Y. Liu, X. Chen, L. Li, X. Feng, D. Chen, H. Shan, C. Yang, N. Yan, Nat. Commun. 2023, 14, 4509.
- 22H. Zhou, S. Hong, H. Zhang, Y. Chen, H. Xu, X. Wang, Z. Jiang, S. Chen, Y. Liu, Appl. Catal. B 2019, 256, 117767.
- 23
- 23aZ. Wang, X. Yuan, H. Guo, X. Zhang, J. Peng, Y. Pan, Energy Environ. Sci. 2024, 17, 8019–8056;
- 23bY. Duan, Y. Xia, Y. Ling, S. Zhou, X. Liu, Y. Lan, X. Yin, Y. Yang, X. Yan, M. Liang, S. Hong, L. Zhang, L. Wang, ACS Nano 2024, 18, 21326–21335.
- 24
- 24aC. Mondelli, G. Gözaydın, N. Yan, J. Pérez-Ramírez, Chem. Soc. Rev. 2020, 49, 3764–3782;
- 24bK.-i. Otake, Y. Cui, C. T. Buru, Z. Li, J. T. Hupp, O. K. Farha, J. Am. Chem. Soc. 2018, 140, 8652–8656;
- 24cJ.-Y. Chen, Y. Xiao, F.-S. Guo, K.-M. Li, Y.-B. Huang, Q. Lu, ACS Catal. 2024, 14, 5198–5226.
- 25Q. Wang, Y. Cheng, H. B. Yang, C. Su, B. Liu, Nat. Nanotechnol. 2024, 19, 1442–1451.
- 26
- 26aX. Liang, N. Fu, S. Yao, Z. Li, Y. Li, J. Am. Chem. Soc. 2022, 144, 18155–18174;
- 26bQ. He, D. Liu, J. H. Lee, Y. Liu, Z. Xie, S. Hwang, S. Kattel, L. Song, J. G. Chen, Angew. Chem. Int. Ed. 2020, 59, 3033–3037;
- 26cF. Luo, A. Roy, M. T. Sougrati, A. Khan, D. A. Cullen, X. Wang, M. Primbs, A. Zitolo, F. Jaouen, P. Strasser, J. Am. Chem. Soc. 2023, 145, 14737–14747.
- 27T. Jing, S. Yang, T. Li, Y. Wan, H. Jia, Y. Feng, Y. Zuo, D. Rao, Adv. Funct. Mater. 2024, 34, 2407335.
- 28
- 28aY. Guo, M. Wang, Q. Zhu, D. Xiao, D. Ma, Nat. Catal. 2022, 5, 766–776;
- 28bG. Luo, M. Song, Q. Zhang, L. An, T. Shen, S. Wang, H. Hu, X. Huang, D. Wang, Nano-Micro Lett. 2024, 16, 241;
- 28cW. Ren, X. Tan, C. Jia, A. Krammer, Q. Sun, J. Qu, S. C. Smith, A. Schueler, X. Hu, C. Zhao, Angew. Chem. Int. Ed. 2022, 61, e202203335.
- 29L. Huang, Y.-Q. Su, R. Qi, D. Dang, Y. Qin, S. Xi, S. Zaman, B. You, S. Ding, B. Y. Xia, Angew. Chem. Int. Ed. 2021, 60, 25530–25537.
- 30Y. Cheng, J. Gong, B. Cao, X. Xu, P. Jing, B. Liu, R. Gao, J. Zhang, ACS Catal. 2021, 11, 3958–3974.
- 31L. Hu, J. Shi, Z. Peng, Z. Zheng, H. Dong, T. Wang, Nanoscale 2022, 14, 6202–6211.
- 32W. Luo, Y. Wang, L. Luo, S. Gong, M. Wei, Y. Li, X. Gan, Y. Zhao, Z. Zhu, Z. Li, ACS Catal. 2022, 12, 1167–1179.
- 33Y. Zhou, Q. Zhou, H. Liu, W. Xu, Z. Wang, S. Qiao, H. Ding, D. Chen, J. Zhu, Z. Qi, X. Wu, Q. He, L. Song, Nat. Commun. 2023, 14, 3776.
- 34Y. Shi, B. Luo, R. Sang, D. Cui, Y. Sun, R. Liu, Z. Zhang, Y. Sun, H. Junge, M. Beller, X. Li, Nat. Commun. 2024, 15, 8189.
- 35Y. He, H. Guo, S. Hwang, X. Yang, Z. He, J. Braaten, S. Karakalos, W. Shan, M. Wang, H. Zhou, Z. Feng, K. L. More, G. Wang, D. Su, D. A. Cullen, L. Fei, S. Litster, G. Wu, Adv. Mater. 2020, 32, 2003577.
- 36Y. Chai, S. Chen, Y. Chen, F. Wei, L. Cao, J. Lin, L. Li, X. Liu, S. Lin, X. Wang, T. Zhang, J. Am. Chem. Soc. 2024, 146, 263–273.
- 37
- 37aY. Gu, B. Xi, R. Wei, Q. Fu, Y. Qain, S. Xiong, Nano Lett. 2020, 20, 8375–8383;
- 37bR.-T. Gao, D. He, L. Wu, K. Hu, X. Liu, Y. Su, L. Wang, Angew. Chem. Int. Ed. 2020, 59, 6213–6218.
- 38M. Li, H. Zhu, Q. Yuan, T. Li, M. Wang, P. Zhang, Y. Zhao, D. Qin, W. Guo, B. Liu, X. Yang, Y. Liu, Y. Pan, Adv. Funct. Mater. 2023, 33, 2210867.
- 39
- 39aC. Shi, Y. Liu, R. Qi, J. Li, J. Zhu, R. Yu, S. Li, X. Hong, J. Wu, S. Xi, L. Zhou, L. Mai, Nano Energy 2021, 87, 106153;
- 39bC. Tang, A.-E. Surkus, F. Chen, M.-M. Pohl, G. Agostini, M. Schneider, H. Junge, M. Beller, Angew. Chem. Int. Ed. 2017, 56, 16616–16620.
- 40
- 40aZ. Pei, X. F. Lu, H. Zhang, Y. Li, D. Luan, X. W. Lou, Angew. Chem. Int. Ed. 2022, 61, e202207537;
- 40bL. Bai, C.-S. Hsu, D. T. L. Alexander, H. M. Chen, X. Hu, Nat. Energy 2021, 6, 1054–1066.
- 41Z. H. Pei, X. F. Lu, H. B. Zhang, Y. X. Li, D. Y. Luan, X. W. Lou, Angew. Chem. Int. Ed. 2022, 61, e202207537.
- 42Y. Li, X. Wei, L. Chen, J. Shi, M. He, Nat. Commun. 2019, 10, 5335.
- 43
- 43aB. Lu, L. Guo, F. Wu, Y. Peng, J. E. Lu, T. J. Smart, N. Wang, Y. Z. Finfrock, D. Morris, P. Zhang, N. Li, P. Gao, Y. Ping, S. Chen, Nat. Commun. 2019, 10, 631;
- 43bX. Ding, D. Liu, P. Zhao, X. Chen, H. Wang, F. E. Oropeza, G. Gorni, M. Barawi, M. García-Tecedor, V. A. de la Peña O'Shea, J. P. Hofmann, J. Li, J. Kim, S. Cho, R. Wu, K. H. L. Zhang, Nat. Commun. 2024, 15, 5336;
- 43cS. Chen, T. Luo, X. Li, K. Chen, J. Fu, K. Liu, C. Cai, Q. Wang, H. Li, Y. Chen, C. Ma, L. Zhu, Y.-R. Lu, T.-S. Chan, M. Zhu, E. Cortés, M. Liu, J. Am. Chem. Soc. 2022, 144, 14505–14516.
- 44
- 44aX. Liu, X. Wang, C. Mao, J. Qiu, R. Wang, Y. Liu, Y. Chen, D. Wang, Angew. Chem. Int. Ed. 2024, 63, e202408109;
- 44bD. Xiao, X. Bao, D. Dai, Y. Gao, S. Si, Z. Wang, Y. Liu, P. Wang, Z. Zheng, H. Cheng, Y. Dai, B. Huang, Adv. Mater. 2023, 35, 2304133.
- 45Q. Jiang, Y. Wu, F. Wang, P. Zhu, R. Li, Y. Zhao, Y. Huang, X. Wu, S. Zhao, Y. Li, B. Wang, D. Gao, R. Zhang, Adv. Mater. 2024, 36, 2402257.
- 46
- 46aY. Duan, M. Xue, B. Liu, M. Zhang, Y. Wang, B. Wang, R. Zhang, K. Yan, Chin. J. Catal. 2024, 57, 68–79;
- 46bR.-Y. Fan, X.-J. Zhai, W.-Z. Qiao, Y.-S. Zhang, N. Yu, N. Xu, Q.-X. Lv, Y.-M. Chai, B. Dong, Nano-Micro Lett. 2023, 15, 190;
- 46cW. Chen, L. Xu, X. Zhu, Y.-C. Huang, W. Zhou, D. Wang, Y. Zhou, S. Du, Q. Li, C. Xie, L. Tao, C.-L. Dong, J. Liu, Y. Wang, R. Chen, H. Su, C. Chen, Y. Zou, Y. Li, Q. Liu, S. Wang, Angew. Chem. Int. Ed. 2021, 60, 7297–7307.
- 47Z. Tian, Y. Da, M. Wang, X. Dou, X. Cui, J. Chen, R. Jiang, S. Xi, B. Cui, Y. Luo, H. Yang, Y. Long, Y. Xiao, W. Chen, Nat. Commun. 2023, 14, 142.
- 48J. Ma, X. Wang, J. Song, Y. Tang, T. Sun, L. Liu, J. Wang, J. Wang, M. Yang, Angew. Chem. Int. Ed. 2024, 63, e202319153.
- 49Q. Shi, W. Tang, K. Kong, X. Liu, Y. Wang, H. Duan, Angew. Chem. Int. Ed. 2024, 63, e202407580.
- 50
- 50aL. Luo, W. Chen, S.-M. Xu, J. Yang, M. Li, H. Zhou, M. Xu, M. Shao, X. Kong, Z. Li, H. Duan, J. Am. Chem. Soc. 2022, 144, 7720–7730;
- 50bI. Vinogradov, S. Singh, H. Lyle, M. Paolino, A. Mandal, J. Rossmeisl, T. Cuk, Nat. Mater. 2022, 21, 88–94;
- 50cY. Liu, H. Shang, B. Zhang, D. Yan, X. Xiang, Nat. Commun. 2024, 15, 8155;
- 50dJ. Yang, T. Xia, H. Li, H. Yan, X. Kong, Z. Li, M. Shao, X. Duan, Angew. Chem. Int. Ed. 2025, 64, e202413457.
- 51W. Chen, C. Xie, Y. Wang, Y. Zou, C.-L. Dong, Y.-C. Huang, Z. Xiao, Z. Wei, S. Du, C. Chen, B. Zhou, J. Ma, S. Wang, Chem 2020, 6, 2974–2993.
- 52J. Ma, X. Wang, J. Song, Y. Tang, T. Sun, L. Liu, J. Wang, J. Wang, M. Yang, Angew. Chem. Int. Ed. 2024, 63, e202319153.
- 53Y. Wang, Y.-Q. Zhu, Z. Xie, S.-M. Xu, M. Xu, Z. Li, L. Ma, R. Ge, H. Zhou, Z. Li, X. Kong, L. Zheng, J. Zhou, H. Duan, ACS Catal. 2022, 12, 12432–12443.
- 54W. Chen, L. Zhang, L. Xu, Y. He, H. Pang, S. Wang, Y. Zou, Nat. Commun. 2024, 15, 2420.
- 55
- 55aJ. P. Guthrie, J. Am. Chem. Soc. 2000, 122, 5529–5538;
- 55bW. Chen, J. Shi, C. Xie, W. Zhou, L. Xu, Y. Li, Y. Wu, B. Wu, Y.-C. Huang, B. Zhou, M. Yang, J. Liu, C.-L. Dong, T. Wang, Y. Zou, S. Wang, Natl. Sci. Rev. 2023, 10, nwad099.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.