Adjacent-Ligand Tuning of Atomically Precise Cu−Pd Sites Enables Efficient Methanol Electrooxidation with a CO-Free Pathway
Yuanlong Qin
Department of Chemistry, Capital Normal University, Beijing, 100048 P. R. China
These authors contribute this work equally.
Contribution: Conceptualization (equal), Data curation (equal), Investigation (equal), Writing - original draft (equal)
Search for more papers by this authorKedi Yu
Department of Chemistry, Capital Normal University, Beijing, 100048 P. R. China
These authors contribute this work equally.
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Writing - original draft (equal)
Search for more papers by this authorProf. Guo Wang
Department of Chemistry, Capital Normal University, Beijing, 100048 P. R. China
These authors contribute this work equally.
Contribution: Formal analysis (equal), Software (lead), Writing - original draft (equal)
Search for more papers by this authorZechao Zhuang
Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Contribution: Methodology (supporting), Validation (supporting)
Search for more papers by this authorYuhai Dou
Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093 P. R. China
Contribution: Investigation (supporting), Validation (supporting)
Search for more papers by this authorCorresponding Author
Prof. Dingsheng Wang
Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Contribution: Methodology (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Prof. Zhengbo Chen
Department of Chemistry, Capital Normal University, Beijing, 100048 P. R. China
Contribution: Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorYuanlong Qin
Department of Chemistry, Capital Normal University, Beijing, 100048 P. R. China
These authors contribute this work equally.
Contribution: Conceptualization (equal), Data curation (equal), Investigation (equal), Writing - original draft (equal)
Search for more papers by this authorKedi Yu
Department of Chemistry, Capital Normal University, Beijing, 100048 P. R. China
These authors contribute this work equally.
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Writing - original draft (equal)
Search for more papers by this authorProf. Guo Wang
Department of Chemistry, Capital Normal University, Beijing, 100048 P. R. China
These authors contribute this work equally.
Contribution: Formal analysis (equal), Software (lead), Writing - original draft (equal)
Search for more papers by this authorZechao Zhuang
Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Contribution: Methodology (supporting), Validation (supporting)
Search for more papers by this authorYuhai Dou
Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093 P. R. China
Contribution: Investigation (supporting), Validation (supporting)
Search for more papers by this authorCorresponding Author
Prof. Dingsheng Wang
Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Contribution: Methodology (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Prof. Zhengbo Chen
Department of Chemistry, Capital Normal University, Beijing, 100048 P. R. China
Contribution: Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
Whether the catalyst can realize the non-CO pathway is the key to greatly improve the catalytic activity and stability of methanol oxidation reaction (MOR). It is feasible to optimize the reaction path selectivity by modifying organic ligands and constructing single-atom systems. At the same time, heterogeneous metal nanosheets with atomic thickness have been shown to significantly enhance the catalytic activity of materials due to their ultra-high exposure of active sites and synergistic effects. Herein, we synthesize an ultra-thin heterogeneous alloy metallene with organic ligand-modified surface Cu single atom by one-pot wet chemical method, and further construct an efficient Cu−Pd active sites. The prepared octanoic acid ligand modified PdCu single-atom alloys metallene (SAA OA−Cu-Pdene) shows excellent catalytic activity and stability, with mass activity up to 5.64 A mgPd−1 and electrochemical active surface area (ECSA) up to 160.39 m2 gPd−1. Structural characterization and in situ experiment jointly indicate that ligand modulation brings about charge transfer, and the accompanying rapid migration of OH− greatly improves the selectivity of non-CO pathways while improving the catalytic activity. The results highlight the importance of adjacent-ligand regulation and provide a new strategy for the design of MOR catalysts with high selectivity of non-CO pathway.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420817-sup-0001-misc_information.pdf2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Feng, H. Liu, J. Yang, Sci. Adv. 2017, 3, e1700580;
- 1bY. C. Wang, L. Huang, P. Zhang, Y. T. Qiu, T. Sheng, Z. Y. Zhou, G. Wang, J. G. Liu, M. Rauf, Z. Q. Gu, W. T. Wu, S. G. Sun, ACS Energy Lett. 2017, 2, 645–650;
- 1cS. Sharma, B. G. Pollet, J. Power Sources 2012, 208, 96–119.
- 2L. Huang, X. Zhang, Q. Wang, Y. Han, Y. Fang, S. Dong, J. Am. Chem. Soc. 2018, 140, 1142–1147.
- 3Y. Wang, M. Zheng, Y. Li, C. Ye, J. Chen, J. Ye, Q. Zhang, J. Li, Z. Zhou, X. Z. Fu, J. Wang, S. G. Sun, D. Wang, Angew. Chem. Int. Ed. 2022, 61, e202115735.
- 4L. Wang, J. Wu, S. Wang, H. Liu, Y. Wang, D. Wang, Nano Res. 2023, 17, 3261–3301.
- 5C. Li, X. Chen, L. Zhang, S. Yan, A. Sharma, B. Zhao, A. Kumbhar, G. Zhou, J. Fang, Angew. Chem. Int. Ed. 2021, 60, 7675–7680.
- 6L. Hui, Y. Xue, C. Xing, Y. Liu, Y. Du, Y. Fang, H. Yu, B. Huang, Y. Li, Adv. Sci. 2022, 9, e2104991.
- 7
- 7aJ. Liang, H. Cheng, B. Zhao, Q. Hu, Z. Xing, Y. Zhang, L. Niu, Small 2023, 19, e2302149;
- 7bY. Wang, F. Ma, G. Zhang, J. Zhang, H. Zhao, Y. Dong, D. Wang, Nano Res. 2024, DOI: 10.1007/s12274-024-6940-7.
- 8
- 8aJ. Wang, B. Zhang, W. Guo, L. Wang, J. Chen, H. Pan, W. Sun, Adv. Mater. 2023, 35, 2211099;
- 8bW. Zhong, Y. Liu, D. Zhang, J. Phys. Chem. C 2012, 116, 2994–3000.
- 9X. Wang, S. Xi, W. S. V. Lee, P. Huang, P. Cui, L. Zhao, W. Hao, X. Zhao, Z. Wang, H. Wu, H. Wang, C. Diao, A. Borgna, Y. Du, Z. G. Yu, S. Pennycook, J. Xue, Nat. Commun. 2020, 11, 4647.
- 10C. Cao, Q. Xu, Q.-L. Zhu, Chem. Catalysis 2022, 2, 693–723.
- 11
- 11aY. Zhou, L. Zhang, Z. Zhu, M. Wang, N. Li, T. Qian, C. Yan, J. Lu, Angew. Chem. Int. Ed. 2024, 63, e202319029;
- 11bQ. Mao, K. Deng, H. Yu, Y. Xu, Z. Wang, X. Li, L. Wang, H. Wang, Adv. Funct. Mater. 2022, 32, 2201081.
- 12
- 12aY. Wang, D. Wang, Y. Li, Adv. Mater. 2021, 33, e2008151;
- 12bH. T. Tang, H. Y. Zhou, Y. M. Pan, J. L. Zhang, F. H. Cui, W. H. Li, D. Wang, Angew. Chem. Int. Ed. 2024, 63, e202315032;
- 12cX. Y. Wang, Y. Z. Pan, J. Yang, W. H. Li, T. Gan, Y. M. Pan, H. T. Tang, D. Wang, Angew. Chem. Int. Ed. 2024, 63, e202404295.
- 13T. Gan, D. Wang, Nano Res. 2024, 17, 18–38.
- 14
- 14aJ. Sun, H. Yang, W. Gao, T. Cao, G. Zhao, Angew. Chem. Int. Ed. 2022, 61, e202211373;
- 14bF. Xue, Q. Li, M. Lv, S. Weng, T. Li, Y. Ren, Y. Liu, D. Li, Y. He, Q. Li, X. Chen, Q. Zhang, L. Gu, J. Deng, J. Chen, L. He, X. Kuang, J. Miao, Y. Cao, K. Lin, X. Xing, Nano Lett. 2024, 24, 6269–6277.
- 15J. Yang, C. Zhu, W. H. Li, X. Zheng, D. Wang, Angew. Chem. Int. Ed. 2024, 63, e202314382.
- 16J. Zhao, Y. Zhang, Z. Zhuang, Y. Deng, G. Gao, J. Li, A. Meng, G. Li, L. Wang, Z. Li, D. Wang, Angew. Chem. Int. Ed. 2024, 63, e202404968.
- 17
- 17aP. Qiao, S. Xu, D. Zhang, R. Li, S. Zou, J. Liu, W. Yi, J. Li, J. Fan, Chem. Commun. 2014, 50, 11713–11716;
- 17bP. Qiao, S. Zou, S. Xu, J. Liu, Y. Li, G. Ma, L. Xiao, H. Lou, J. Fan, J. Mater. Chem. A 2014, 2, 17321–17328;
- 17cJ. Liu, S. Zou, L. Xiao, J. Fan, Catal. Sci. Technol. 2014, 4, 441–446.
- 18
- 18aS. Guan, Z. Yuan, Z. Zhuang, H. Zhang, H. Wen, Y. Fan, B. Li, D. Wang, B. Liu, Angew. Chem. Int. Ed. 2024, 63, e202316550;
- 18bZ. Sun, C. Li, Z. Wei, F. Zhang, Z. Deng, K. Zhou, Y. Wang, J. Guo, J. Yang, Z. Xiang, P. Ma, H. Zhai, S. Li, W. Chen, Adv. Mater. 2024, 36, e2404665.
- 19
- 19aJ. Li, C. Jing, J. Wang, Nano Res. 2024, 17, 6922–6930;
- 19bY. Ma, Q. Yang, J. Qi, Y. Zhang, Y. Gao, Y. Zeng, N. Jiang, Y. Sun, K. Qu, W. Fang, Y. Li, X. Lu, C. Zhi, J. Qiu, Proc. Natl. Acad. Sci. USA 2024, 121, e2319525121.
- 20
- 20aX. Zhang, L. Hui, D. Yan, J. Li, X. Chen, H. Wu, Y. Li, Angew. Chem. Int. Ed. 2023, 62, e202308968;
- 20bL. Xie, J. Wang, K. Wang, Z. He, J. Liang, Z. Lin, T. Wang, R. Cao, F. Yang, Z. Cai, Y. Huang, Q. Li, Angew. Chem. Int. Ed. 2024, e202407658.
- 21
- 21aY. J. Wu, J. Yang, T. X. Tu, W. Q. Li, P. F. Zhang, Y. Zhou, J. F. Li, J. T. Li, S. G. Sun, Angew. Chem. Int. Ed. 2021, 60, 26829–26836;
- 21bY. Jiang, Z. Liang, H. Fu, M. Sun, S. Wang, B. Huang, Y. Du, J. Am. Chem. Soc. 2024, 146, 9012–9025.
- 22Y. Ma, M. Zhang, J. Wu, Y. Zhao, X. Du, H. Huang, Y. Zhou, Y. Liu, Z. Kang, Small 2023, 19, 2300883.
- 23G. Wang, Y. Liu, X. Zhang, X. Zong, X. Zhang, K. Zheng, D. Qu, L. An, X. Qi, Z. Sun, J. Am. Chem. Soc. 2024, 146, 8668–8676.
- 24P. Song, B. Hu, D. Zhao, J. Fu, X. Su, W. Feng, K. Yu, S. Liu, J. Zhang, C. Chen, ACS Nano 2023, 17, 4619–4628.
- 25J. Pan, X. Wang, X. Yang, C. Guo, Q. Yue, X. Xu, L. Wang, Y. Gao, B. Gao, Appl. Catal. B 2024, 351, 123997.
- 26
- 26aL. Xiong, Z. Sun, X. Zhang, L. Zhao, P. Huang, X. Chen, H. Jin, H. Sun, Y. Lian, Z. Deng, M. H. Rummerli, W. Yin, D. Zhang, S. Wang, Y. Peng, Nat. Commun. 2019, 10, 3782;
- 26bX. Lao, X. Liao, C. Chen, J. Wang, L. Yang, Z. Li, J. W. Ma, A. Fu, H. Gao, P. Guo, Angew. Chem. Int. Ed. 2023, 62, e202304510;
- 26cX. Zhang, L. Hui, D. Yan, J. Li, X. Chen, H. Wu, Y. Li, Angew. Chem. Int. Ed. 2023, 62, e202308968;
- 26dS. Chen, N. Liu, J. Zhong, R. Yang, B. Yan, L. Gan, P. Yu, X. Gui, H. Yang, D. Yu, Z. Zeng, G. Yang, Angew. Chem. Int. Ed. 2022, 61, e202209693;
- 26eW. Liang, Y. Wang, L. Zhao, W. Guo, D. Li, W. Qin, H. Wu, Y. Sun, L. Jiang, Adv. Mater. 2021, 33, e2100713;
- 26fA. R. Poerwoprajitno, L. Gloag, J. Watt, S. Cheong, X. Tan, H. Lei, H. A. Tahini, A. Henson, B. Subhash, N. M. Bedford, B. K. Miller, P. B. O'Mara, T. M. Benedetti, D. L. Huber, W. Zhang, S. C. Smith, J. J. Gooding, W. Schuhmann, R. D. Tilley, Nat. Catal. 2022, 5, 231–237;
- 26gF. Saleem, Z. Zhang, X. Cui, Y. Gong, B. Chen, Z. Lai, Q. Yun, L. Gu, H. Zhang, J. Am. Chem. Soc. 2019, 141, 14496–14500;
- 26hQ. Feng, S. Zhao, D. He, S. Tian, L. Gu, X. Wen, C. Chen, Q. Peng, D. Wang, Y. Li, J. Am. Chem. Soc. 2018, 140, 2773–2776;
- 26iL. Huang, J. Zou, J. Y. Ye, Z. Y. Zhou, Z. Lin, X. Kang, P. K. Jain, S. Chen, Angew. Chem. Int. Ed. 2019, 58, 8794–8798;
- 26jH. Lei, X. Li, C. Sun, J. Zeng, S. S. Siwal, Q. Zhang, Small 2019, 15, e1804722;
- 26kC. Wang, L. Zheng, R. Chang, L. Du, C. Zhu, D. Geng, D. Yang, ACS Appl. Mater. Interfaces 2018, 10, 29965–29971;
- 26lT. J. Wang, F. M. Li, H. Huang, S. W. Yin, P. Chen, P. J. Jin, Y. Chen, Adv. Funct. Mater. 2020, 30, 2000534.
- 27Z. Wei, Z. Zhao, C. Qiu, S. Huang, Z. Yao, M. Wang, Y. Chen, Y. Lin, X. Zhong, X. Li, J. Wang, Nat. Commun. 2023, 14, 661.
- 28
- 28aZ. Sun, S. Yu, S. Toan, R. Abiev, M. Fan, Z. Sun, ACS Catal. 2023, 13, 13704–13716;
- 28bV. T. T. Phan, Q. P. Nguyen, B. Wang, I. J. Burgess, J. Am. Chem. Soc. 2024, 146, 4830–4841.
- 29Y. Qi, Y. Zhang, L. Yang, Y. Zhao, Y. Zhu, H. Jiang, C. Li, Nat. Commun. 2022, 13, 4602.
- 30S. Bai, W. Jing, G. He, C. Liao, F. Wang, Y. Liu, L. Guo, ACS Nano 2023, 17, 10976–10986.
- 31X. Wang, M. Xie, F. Lyu, Y. M. Yiu, Z. Wang, J. Chen, L. Y. Chang, Y. Xia, Q. Zhong, M. Chu, H. Yang, T. Cheng, T. K. Sham, Q. Zhang, Nano Lett. 2020, 20, 7751–7759.
- 32X. Fan, W. Chen, L. Xie, X. Liu, Y. Ding, L. Zhang, M. Tang, Y. Liao, Q. Yang, X. Z. Fu, S. Luo, J. L. Luo, Adv. Mater. 2024, 36, e2313179.
- 33G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169–11186.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.