Locking up G-Quadruplexes with Light-Triggered Staples Leads to Increased Topological, Thermodynamic, and Metabolic Stability
Jack Barr
Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Enrico Cadoni
Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
These authors contributed equally to this work.
Search for more papers by this authorDr. Sofie Schellinck
NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
Search for more papers by this authorDr. Emiliano Laudadio
Department of Science and Engineering of Matter, Environment and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche 12, 60131 Ancona, Italy
Search for more papers by this authorProf. Dr. José C. Martins
NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
Search for more papers by this authorCorresponding Author
Prof. Dr. Annemieke Madder
Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
Search for more papers by this authorJack Barr
Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Enrico Cadoni
Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
These authors contributed equally to this work.
Search for more papers by this authorDr. Sofie Schellinck
NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
Search for more papers by this authorDr. Emiliano Laudadio
Department of Science and Engineering of Matter, Environment and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche 12, 60131 Ancona, Italy
Search for more papers by this authorProf. Dr. José C. Martins
NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
Search for more papers by this authorCorresponding Author
Prof. Dr. Annemieke Madder
Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
Search for more papers by this authorAbstract
G-quadruplexes (G4 s) are secondary, tetraplexed DNA structures abundant in non-coding regions of the genome, implicated in gene transcription processes and currently firmly recognised as important potential therapeutic targets. Given their affinity for human proteins, G4 structures are investigated as potential decoys and aptamers. However, G4 s tend to adopt different conformations depending on the exact environmental conditions, and often only one displays the specifically desired biological activity. Their less intensively studied counterparts, the elusive tetraplexed intercalated-motifs (IMs) are typically unstable at neutral pH, hampering the investigation of their potential involvement in a biological context. We herein report on a photochemical method for “stapling” such tetraplexed-structures, to increase their stability, lock their topology and enhance their enzymatic resistance, while maintaining biological activity. The chemical structure and topology of the stapled Thrombin Binding Aptamer (TBA) was spectroscopically characterised and rationalised in silico. The method was then extended to other biologically relevant G4- and IM-prone sequences, hinting towards potential application of such stapled structures in a therapeutic context.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420592-sup-0001-misc_information.pdf4.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Gehring, J.-L. Leroy, M. Guéron, Nature 1993, 363, 561–565.
- 2E. Henderson, C. C. Hardin, S. K. Walk, I. Tinoco, E. H. Blackburn, Cell 1987, 51, 899–908.
- 3R. K. Moyzis, J. M. Buckingham, L. S. Cram, M. Dani, L. L. Deaven, M. D. Jones, J. Meyne, R. L. Ratliff, J. R. Wu, Proc. Natl. Acad. Sci. USA 1988, 85, 6622–6626.
- 4A. L. Moye, K. C. Porter, S. B. Cohen, T. Phan, K. G. Zyner, N. Sasaki, G. O. Lovrecz, J. L. Beck, T. M. Bryan, Nat. Commun. 2015, 6, 5.
- 5S. Cogoi, L. E. Xodo, Nucleic Acids Res. 2006, 34, 2536–2549.
- 6A. Siddiqui-Jain, C. L. Grand, D. J. Bearss, L. H. Hurley, Proc. Natl. Acad. Sci. USA 2002, 99, 11593–11598.
- 7J. Robinson, F. Raguseo, S. P. Nuccio, D. Liano, M. Di Antonio, Nucleic Acids Res. 2021, 49, 8419–8431.
- 8D. Varshney, J. Spiegel, K. Zyner, D. Tannahill, S. Balasubramanian, Nat. Rev. Mol. Cell Biol. 2020, 21, 459–474.
- 9M. Di Antonio, A. Ponjavic, A. Radzevičius, R. T. Ranasinghe, M. Catalano, X. Zhang, J. Shen, L.-M. Needham, S. F. Lee, D. Klenerman, S. Balasubramanian, Nat. Chem. 2020, 12, 832–837.
- 10P. Víšková, E. Ištvánková, J. Ryneš, Š. Džatko, T. Loja, M. L. Živković, R. Rigo, R. El-Khoury, I. Serrano-Chacón, M. J. Damha, C. González, J.-L. Mergny, S. Foldynová-Trantírková, L. Trantírek, Nat. Commun. 2024, 15, 1992.
- 11M. Zeraati, D. B. Langley, P. Schofield, A. L. Moye, R. Rouet, W. E. Hughes, T. M. Bryan, M. E. Dinger, D. Christ, Nat. Chem. 2018, 10, 631–637.
- 12J. J. King, K. L. Irving, C. W. Evans, R. V. Chikhale, R. Becker, C. J. Morris, C. D. Peña Martinez, P. Schofield, D. Christ, L. H. Hurley, Z. A. E. Waller, K. S. Iyer, N. M. Smith, J. Am. Chem. Soc. 2020, 142, 20600–20604.
- 13R. Freeman, X. Liu, I. Willner, J. Am. Chem. Soc. 2011, 133, 11597–11604.
- 14L. Feng, Y. Chen, J. Ren, X. Qu, Biomaterials 2011, 32, 2930–2937.
- 15T. Li, S. Dong, E. Wang, J. Am. Chem. Soc. 2010, 132, 13156–13157.
- 16N. Kosiol, S. Juranek, P. Brossart, A. Heine, K. Paeschke, Mol. Cancer 2021, 20.
- 17C. Platella, C. Riccardi, D. Montesarchio, G. N. Roviello, D. Musumeci, Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1429–1447.
- 18S. Cogoi, S. Zorzet, V. Rapozzi, I. Géci, E. B. Pedersen, L. E. Xodo, Nucleic Acids Res. 2013, 41, 4049–4064.
- 19F. Li, J. Tang, J. Geng, D. Luo, D. Yang, Prog. Polym. Sci. 2019, 98, 101163.
- 20A. Ambrus, D. Chen, J. Dai, T. Bialis, R. A. Jones, D. Yang, Nucleic Acids Res. 2006, 34, 2723–2735.
- 21A. N. Lane, J. B. Chaires, R. D. Gray, J. O. Trent, Nucleic Acids Res. 2008, 36, 5482–5515.
- 22M. Nishio, K. Tsukakoshi, K. Ikebukuro, Biosens. Bioelectron. 2021, 178, 113030.
- 23P. Lejault, J. Mitteaux, F. R. Sperti, D. Monchaud, Cell Chem. Biol. 2021, 28, 436–455.
- 24L. Zhao, X. Qi, X. Yan, Y. Huang, X. Liang, L. Zhang, S. Wang, W. Tan, J. Am. Chem. Soc. 2019, 141, 17493–17497.
- 25F. Zhou, P. Wang, J. Chen, Z. Zhu, Y. Li, S. Wang, S. Wu, Y. Sima, T. Fu, W. Tan, Z. Zhao, Nucleic Acids Res. 2022, 50, 9039–9050.
- 26R. El-Khoury, M. J. Damha, Chem. Commun. 2023, 59, 3715–3718.
- 27T. M. Brown, H. H. Fakih, D. Saliba, J. Asohan, H. F. Sleiman, J. Am. Chem. Soc. 2023, 145, 2142–2151.
- 28C. Riccardi, A. Meyer, J. J. Vasseur, I. Russo Krauss, L. Paduano, F. Morvan, D. Montesarchio, Bioorg. Chem. 2020, 94, 103379.
- 29P. Schultze, R. F. Macaya, J. Feigon, J. Mol. Biol. 1994, 235, 1532–1547.
- 30C. Riccardi, E. Napolitano, C. Platella, D. Musumeci, D. Montesarchio, Pharmacol. Ther. 2021, 217, 107649.
- 31T. Sakamoto, Y. Tanaka, K. Fujimoto, Org. Lett. 2015, 17, 936–939.
- 32M. Op de Beeck, A. Madder, J. Am. Chem. Soc. 2012, 134, 10737–10740.
- 33S. W. Blume, V. Guarcello, W. Zacharias, D. M. Miller, Nucleic Acids Res. 1997, 25, 617–625.
- 34H. Kashida, H. Azuma, H. Sotome, H. Miyasaka, H. Asanuma, Angew. Chem. Int. Ed. 2024, 63.
- 35M. O. De Beeck, A. Madder, J. Am. Chem. Soc. 2011, 133, 796–807.
- 36A. Mizutani, M. Tanaka, Anal. Biochem. 2018, 553, 54–56.
- 37P. Schultze, R. F. Macaya, J. Feigon, J. Mol. Biol. 1994, 235, 1532–1547.
- 38T.-L. Hwang, A. J. Shaka, J. Magn. Reson. 1998, 135, 280–287.
- 39E. Cadoni, P. R. Magalhães, R. M. Emídio, E. Mendes, J. Vítor, J. Carvalho, C. Cruz, B. L. Victor, A. Paulo, Pharmaceuticals 2021, 14, 669.
- 40R. D. Gray, J. O. Trent, J. B. Chaires, J. Mol. Biol. 2014, 426, 1629–1650.
- 41B. Heddi, V. V. Cheong, H. Martadinata, A. T. Phan, Proc. Natl. Acad. Sci. USA 2015, 112, 9608–9613.
- 42C. Honisch, E. Ragazzi, R. Hussain, J. Brazier, G. Siligardi, P. Ruzza, Pharmaceutica 2021, 13, 1104.
- 43C. Liu, B. Zhou, Y. Geng, D. Yan Tam, R. Feng, H. Miao, N. Xu, X. Shi, Y. You, Y. Hong, B. Z. Tang, P. Kwan Lo, V. Kuryavyi, G. Zhu, Chem. Sci. 2019, 10, 218–226.
- 44T. Li, E. Wang, S. Dong, J. Am. Chem. Soc. 2009, 131, 15082–15083.
- 45A. Kotar, R. Rigo, C. Sissi, J. Plavec, Nucleic Acids Res. 2019, 47, 2641–2653.
- 46A. Kerkour, J. Marquevielle, S. Ivashchenko, L. A. Yatsunyk, J.-L. Mergny, G. F. Salgado, J. Biol. Chem. 2017, 292, 8082–8091.
- 47A. T. Phan, M. Guéron, J.-L. Leroy, J. Mol. Biol. 2000, 299, 123–144.
- 48A. D. Keefe, S. Pai, A. Ellington, Nat. Rev. Drug Discovery 2010, 9, 537–550.
- 49T.-L. Hwang, A. J. Shaka, J. Magn. Reson. 1998, 135, 280–287.
- 50P. Schultze, R. F. Macaya, J. Feigon, J. Mol. Biol. 1994, 235, 1532–1547.
- 51I. Russo Krauss, A. Merlino, A. Randazzo, E. Novellino, L. Mazzarella, F. Sica, Nucleic Acids Res. 2012, 40, 8119–8128.
- 52C. Liu, B. Zhou, Y. Geng, D. Yan Tam, R. Feng, H. Miao, N. Xu, X. Shi, Y. You, Y. Hong, B. Z. Tang, P. Kwan Lo, V. Kuryavyi, G. Zhu, Chem. Sci. 2019, 10, 218–226.
- 53T. Sakamoto, Y. Tanaka, K. Fujimoto, Org. Lett. 2015, 17, 936–939.
- 54K. Stevens, D. D. Claeys, S. Catak, S. Figaroli, M. Hocek, J. M. Tromp, S. Schürch, V. Van Speybroeck, A. Madder, Chem. Eur. J. 2011, 17, 6940–6953.
- 55A. V. Tataurov, Y. You, R. Owczarzy, Biophys. Chem. 2008, 133, 66–70.
- 56P. Schultze, R. F. Macaya, J. Feigon, J. Mol. Biol. 1994, 235, 1532–1547.
- 57M. Op De Beeck, A. Madder, J. Am. Chem. Soc. 2012, 134, 10737–10740.
- 58E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. 2004, 25, 1605–1612.
- 59K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror, D. E. Shaw, Proteins: Structure, Function and Bioinformatics 2010, 78, 1950–1958.
- 60M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindah, SoftwareX 2015, 1(2), 19–25.
10.1016/j.softx.2015.06.001 Google Scholar
- 61D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen, J. Comput. Chem. 2005, 26, 1701–1718.
- 62K. K. Grotz, N. Schwierz, J. Chem. Theory Comput. 2022, 18, 526–537.
- 63P. Heid, Optim Lett 2023, 17, 27–44.
- 64E. Laudadio, R. Galeazzi, G. Mobbili, C. Minnelli, A. Barbon, M. Bortolus, P. Stipa, ACS Omega 2019, 4, 5029–5037.
- 65B. Hess, H. Bekker, H. J. C. Berendsen, J. G. E. M. Fraaije, J. Comput. Chem. 1997, 18, 1463–1472.
- 66R. Zhang, C. Gao, S. Pan, R. Shang, Sensors 2020, 20, 694.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.