Pressure-Engineered Through-Space Conjugation for Precise Control of Clusteroluminescence
Yayun Wang
School of Physics Science and Information Technology, Liaocheng University, Liaocheng, Shandong, 252000 China
These authors contributed equally to this work.
Search for more papers by this authorZuping Xiong
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058 China
These authors contributed equally to this work.
Search for more papers by this authorYanan Wang
School of Physics Science and Information Technology, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorDr. Aisen Li
School of Physics Science and Information Technology, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorDr. Yuanyuan Fang
School of Physics Science and Information Technology, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorProf. Lei Li
School of Physics Science and Information Technology, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorCorresponding Author
Prof. Kai Wang
School of Physics Science and Information Technology, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorCorresponding Author
Prof. Qian Li
School of Physics Science and Information Technology, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorCorresponding Author
Prof. Haoke Zhang
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058 China
Search for more papers by this authorYayun Wang
School of Physics Science and Information Technology, Liaocheng University, Liaocheng, Shandong, 252000 China
These authors contributed equally to this work.
Search for more papers by this authorZuping Xiong
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058 China
These authors contributed equally to this work.
Search for more papers by this authorYanan Wang
School of Physics Science and Information Technology, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorDr. Aisen Li
School of Physics Science and Information Technology, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorDr. Yuanyuan Fang
School of Physics Science and Information Technology, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorProf. Lei Li
School of Physics Science and Information Technology, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorCorresponding Author
Prof. Kai Wang
School of Physics Science and Information Technology, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorCorresponding Author
Prof. Qian Li
School of Physics Science and Information Technology, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorCorresponding Author
Prof. Haoke Zhang
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058 China
Search for more papers by this authorAbstract
Clusteroluminogens (CLgens) represent an innovative class of nonconjugated luminophores that address the limitations of conventional π-conjugated molecules. Different from the through-bond conjugation mechanism in π-conjugated luminophores, through-space conjugation (TSC) plays dominant roles in CLgens. However, precisely controlling TSC to customize the optical properties of CLgens remains a significant challenge. This work proposes a novel strategy of high pressure to engineer TSC within tetraphenylalkanes (TPAs)-based CLgens at molecular level. High-pressure exploration enables accurate manipulation of clusteroluminescence and elucidates the intrinsic structure–property relationships involved. Upon initial compression, the predominant molecular distortions marked by increased interfacial angles between benzene rings diminish TSC, resulting in anomalous hypochromatic shift in emission. Subsequently, considerable structural contraction enhances TSC and suppresses molecular motion, resulting in a pronouncedly enhanced and bathochromic-shifted emission. Notably, a series of TPAs-based CLgens exhibit intense white-light emission upon pressure release, attributed to irreversible structural distortion and destruction. This study not only advances the understanding of CLgens, but also underscores the crucial structural factors for effective TSC control, paving the way for establishing new photophysical theories for aggregate science.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420502-sup-0001-misc_information.pdf3.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, J. Kido, Adv. Mater. 2011, 23, 926–952;
- 1bX. Zhang, Y. Bai, J. Deng, P. Zhuang, H. Wang, Aggregate 2024, 5, e517.
- 2X. Wang, H. Zhang, R. Yu, L. Dong, D. Peng, A. Zhang, Y. Zhang, H. Liu, C. Pan, Z. L. Wang, Adv. Mater. 2015, 27, 2324–2331.
- 3
- 3aZ. Xiong, X. Zhang, L. Liu, Q. Zhu, Z. Wang, H. Feng, Z. Qian, Chem. Sci. 2021, 12, 10710–10723;
- 3bK. Li, T.-B. Ren, S. Huan, L. Yuan, X.-B. Zhang, J. Am. Chem. Soc. 2021, 143, 21143–21160;
- 3cY. Yamaguchi, Y. Matsubara, T. Ochi, T. Wakamiya, Z.-i. Yoshida, J. Am. Chem. Soc. 2008, 130, 13867–13869.
- 4
- 4aH. Zhang, Z. Zhao, P. R. McGonigal, R. Ye, S. Liu, J. W. Y. Lam, R. T. K. Kwok, W. Z. Yuan, J. Xie, A. L. Rogach, B. Z. Tang, Mater. Today 2020, 32, 275–292;
- 4bY. Wang, J. Zhang, Q. Xu, W. Tu, L. Wang, Y. Xie, J. Z. Sun, F. Huang, H. Zhang, B. Z. Tang, Nat. Commun. 2024, 15, 6426;
- 4cZ. Zhang, Z. Xiong, B. Chu, Z. Zhang, Y. Xie, L. Wang, J. Z. Sun, H. Zhang, X. Zhang, B. Z. Tang, Aggregate 2022, 3, e278.
- 5
- 5aY. Zhao, L. Xu, Y. He, Z. Feng, W. Feng, H. Yan, Aggregate 2024, 5, e471;
- 5bJ. Liu, H. Zhang, L. Hu, J. Wang, J. W. Y. Lam, L. Blancafort, B. Z. Tang, J. Am. Chem. Soc. 2022, 144, 7901–7910;
- 5cH. Zhang, X. Zheng, N. Xie, Z. He, J. Liu, N. L. C. Leung, Y. Niu, X. Huang, K. S. Wong, R. T. K. Kwok, H. H. Y. Sung, I. D. Williams, A. Qin, J. W. Y. Lam, B. Z. Tang, J. Am. Chem. Soc. 2017, 139, 16264–16272.
- 6Y. Zhang, K. Wang, G. Zhuang, Z. Xie, C. Zhang, F. Cao, G. Pan, H. Chen, B. Zou, Y. Ma, Chem. Eur. J. 2015, 21, 2474–2479.
- 7
- 7aQ. Li, B. Xu, Z. Quan, Acc. Chem. Res. 2023, 56, 3282–3291;
- 7bY. Liu, Q. Zeng, B. Zou, Y. Liu, B. Xu, W. Tian, Angew. Chem. Int. Ed. 2018, 57, 15670–15674;
- 7cJ. Zou, Y. Fang, Y. Shen, Y. Xia, K. Wang, C. Zhang, Y. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202207426.
- 8F. Bai, K. Bian, X. Huang, Z. Wang, H. Fan, Chem. Rev. 2019, 119, 7673–7717.
- 9
- 9aC. Lv, W. Liu, Q. Luo, H. Yi, H. Yu, Z. Yang, B. Zou, Y. Zhang, Chem. Sci. 2020, 11, 4007–4015;
- 9bH. Liu, Y. Gu, Y. Dai, K. Wang, S. Zhang, G. Chen, B. Zou, B. Yang, J. Am. Chem. Soc. 2020, 142, 1153–1158;
- 9cA. Li, Z. Liu, M. Gao, C. Bi, J. Yang, S. Xu, J. Wang, Z. Li, Mater. Chem. Front. 2024, 8, 2420–2427;
- 9dZ. Huo, D. Duan, T. Ma, Z. Zhang, Q. Jiang, D. An, H. Song, F. Tian, T. Cui, Matter Radiat. Extremes 2023, 8, 038402;
- 9eH.-K. Mao, W. L. Mao, Matter Radiat. Extremes 2022, 7, 068102;
- 9fC. Zhai, X. Yin, S. Niu, M. Yao, S. Hu, J. Dong, Y. Shang, Z. Wang, Q. Li, B. Sundqvist, B. Liu, Nat. Commun. 2021, 12, 4084;
- 9gA. N. Sussardi, G. F. Turner, J. G. Richardson, M. A. Spackman, A. T. Turley, P. R. McGonigal, A. C. Jones, S. A. Moggach, J. Am. Chem. Soc. 2023, 145, 19780–19789;
- 9hJ. C. Aldum, I. Jones, P. R. McGonigal, D. Spagnoli, N. D. Stapleton, G. F. Turner, S. A. Moggach, CrystEngComm 2022, 24, 7103–7108.
- 10
- 10aJ. Wu, Y. Cheng, J. Lan, D. Wu, S. Qian, L. Yan, Z. He, X. Li, K. Wang, B. Zou, J. You, J. Am. Chem. Soc. 2016, 138, 12803–12812;
- 10bA. Li, Z. Ma, J. Wu, P. Li, H. Wang, Y. Geng, S. Xu, B. Yang, H. Zhang, H. Cui, W. Xu, Adv. Opt. Mater. 2017, 6, 1700647.
- 11J. Fang, X. Yu, Y. Liu, Y. Yusran, Y. Wang, V. Valtchev, S. Qiu, B. Zou, Q. Fang, Angew. Chem. Int. Ed. 2024, 63, e202409099.
- 12Q. Li, Y. Wang, W. Pan, W. Yang, B. Zou, J. Tang, Z. Quan, Angew. Chem. Int. Ed. 2017, 56, 15969–15973.
- 13Z. Xiong, J. Zhang, L. Wang, Y. Xie, Y. Wang, Z. Zhao, H. Zhang, J. Z. Sun, F. Huang, B. Z. Tang, CCS Chem. 2023, 5, 2832–2844.
- 14S. Li, Q. Wang, Y. Qian, S. Wang, Y. Li, G. Yang, J. Phys. Chem. A 2007, 111, 11793–11800.
- 15B. R. Fisher, H.-J. Eisler, N. E. Stott, M. G. Bawendi, J. Phys. Chem. B 2004, 108, 143–148.
- 16A. Jaffe, Y. Lin, W. L. Mao, H. I. Karunadasa, J. Am. Chem. Soc. 2017, 139, 4330–4333.
- 17Y. Wang, S. Guo, H. Luo, C. Zhou, H. Lin, X. Ma, Q. Hu, M.-h. Du, B. Ma, W. Yang, X. Lü, J. Am. Chem. Soc. 2020, 142, 16001–16006.
- 18H. Yuan, K. Wang, K. Yang, B. Liu, B. Zou, J. Phys. Chem. Lett. 2014, 5, 2968–2973.
- 19
- 19aZ. Xiong, J. Zhang, J. Z. Sun, H. Zhang, B. Z. Tang, J. Am. Chem. Soc. 2023, 145, 21104–21113;
- 19bH. Jia, X. Sun, X. Meng, M. Wu, A. Li, M. Yang, C. Wang, J. Yang, K. Wang, Q. Li, L. Li, Mater. Chem. Front. 2024, 8, 3064–3072;
- 19cM. Lian, Y. Mu, Z. Ye, Z. Lu, J. Xiao, J. Zhang, S. Ji, H. Zhang, Y. Huo, B. Z. Tang, Aggregate 2024, 5, e560.
- 20Z. Fu, K. Wang, B. Zou, Chin. Chem. Lett. 2019, 30, 1883–1894.
- 21
- 21aK. Nagura, S. Saito, H. Yusa, H. Yamawaki, H. Fujihisa, H. Sato, Y. Shimoikeda, S. Yamaguchi, J. Am. Chem. Soc. 2013, 135, 10322–10325;
- 21bN. Li, Y. Gu, Y. Chen, L. Zhang, Q. Zeng, T. Geng, L. Wu, L. Jiang, G. Xiao, K. Wang, B. Zou, J. Phys. Chem. C 2019, 123, 6763–6767;
- 21cC. Liu, G. Xiao, M. Yang, B. Zou, Z.-L. Zhang, D.-W. Pang, Angew. Chem. Int. Ed. 2018, 57, 1893–1897.
- 22L. Wang, K.-Q. Ye, H.-Y. Zhang, Chin. Chem. Lett. 2016, 27, 1367–1375.
- 23Z. Fu, H. Liu, J. Zhao, X. Zhang, X. Zheng, B. Yang, X. Yang, K. Wang, B. Zou, J. Mater. Chem. C 2021, 9, 14578–14582.
- 24A. Li, S. Xu, C. Bi, Y. Geng, H. Cui, W. Xu, Mater. Chem. Front. 2021, 5, 2588–2606.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.