Isolated Neutral Organic Radical Unveiled Solvent-Radical Interaction in Highly Reducing Photocatalysis
Dr. Aslam C. Shaikh
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721 United States
Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001 India
These authors contributed equally to this work.
Search for more papers by this authorDr. Md Mubarak Hossain
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721 United States
These authors contributed equally to this work.
Search for more papers by this authorDr. Jules Moutet
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721 United States
Search for more papers by this authorDr. Anshu Kumar
Department of Physics, University of Arizona, Tucson, AZ, 85721 United States
Search for more papers by this authorBenjamin Thompson
Department of Optical Sciences, University of Arizona, Tucson, AZ, 85721 United States
Search for more papers by this authorDr. Vanessa M. Huxter
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721 United States
Department of Physics, University of Arizona, Tucson, AZ, 85721 United States
Search for more papers by this authorCorresponding Author
Dr. Thomas L. Gianetti
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721 United States
Search for more papers by this authorDr. Aslam C. Shaikh
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721 United States
Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001 India
These authors contributed equally to this work.
Search for more papers by this authorDr. Md Mubarak Hossain
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721 United States
These authors contributed equally to this work.
Search for more papers by this authorDr. Jules Moutet
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721 United States
Search for more papers by this authorDr. Anshu Kumar
Department of Physics, University of Arizona, Tucson, AZ, 85721 United States
Search for more papers by this authorBenjamin Thompson
Department of Optical Sciences, University of Arizona, Tucson, AZ, 85721 United States
Search for more papers by this authorDr. Vanessa M. Huxter
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721 United States
Department of Physics, University of Arizona, Tucson, AZ, 85721 United States
Search for more papers by this authorCorresponding Author
Dr. Thomas L. Gianetti
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721 United States
Search for more papers by this authorAbstract
Diffusion-limited kinetics is a key mechanistic debate when consecutive photoelectron transfer (conPET) is discussed in photoredox catalysis. In situ generated organic photoactive radicals can access catalytic systems as reducing as alkaline metals that can activate remarkably stable bonds. However, in many cases, the extremely short-lived transient nature of these doublet state open-shell species has led to debatable mechanistic studies, hindering adoption and development. Herein, we document the use of an isolated and stable neutral organic nPrDMQA radical as a highly photoreducing species. The isolated radical offers a unique platform to investigate the mechanism behind the photocatalytic activity of organic photocatalyst radicals. The involvement of reduced solvent is observed, formed by single electron transfer (SET) between the short-lived excited state nPrDMQA radical and the solvent. In our detailed mechanistic studies, spectroscopic and chemical affirmation of solvent reduction is strongly evident. Reduction of aryl halides, including difluoroarenes is presented as a model study of the conPET method. Further, the activation of N2O, a greenhouse gas that is yet to be activated by photoredox catalysis, is showcased in the absence of a transition metal.
Conflict of Interests
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420483-sup-0001-misc_information.pdf13.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. Bortolato, S. Cuadros, G. Simionato, L. Dell'Amico, Chem. Commun. 2022, 58, 1263–1283;
- 1bC. Stephenson, T. P. Yoon, D. W. C. MacMillan, Wiley-VCH Verlag, 2017, 444 p, 10.1002/9783527674145;
- 1cI. V. Alabugin, P. Eckhardt, K. M. Christopher, T. Opatz, J. Am. Chem. Soc. 2024.
- 2G. E. M. Crisenza, P. Melchiorre, Nat. Commun. 2020, 11, 803.
- 3
- 3aR. C. McAtee, E. J. McClain, C. R. J. Stephenson, Trends in Chemistry 2019, 1, 111–125;
- 3bL. Marzo, S. K. Pagire, O. Reiser, B. König, Angew. Chem., Int. Ed. 2018, 57, 10034–10072;
- 3cM. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81, 6898–6926;
- 3dN. Romero, D. Nicewicz, Chem. Rev. 2016, 116, 10075–10166;
- 3eC. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322–5363;
- 3fJ. W. Tucker, C. R. J. Stephenson, J. Org. Chem. 2012, 77, 1617–1622.
- 4Selected articles:
- 4aT. Shen, T. H. Lambert, Science 2021, 371, 620–626;
- 4bH. Kim, T. H. Lambert, S. Lin, J. Am. Chem. Soc. 2020, 142, 2087–2092;
- 4cN. G. W. Cowper, C. P. Chernowsky, O. P. Williams, Z. K. Wickens, J. Am. Chem. Soc. 2020, 142, 2093–2099.
- 5L. F. T. Novaes, J. Liu, Y. Shen, L. Lu, J. M. Meinhardt, S. Lin, Chem. Soc. Rev. 2021, 50, 7941–8002.
- 6N. E. S. Tay, D. Lehnherr, T. Rovis, Chem. Rev. 2022, 122, 2487–2649.
- 7F. Glaser, C. B. Larsen, C. Kerzig, O. S. Wenger, Angew. Chem. Int. Ed. 2020, 59, 10266–10284.
- 8S. Wu, J. Kaur, T. A. Karl, X. Tian, J. P. Barham, Angew. Chem. Int. Ed. 2022, 10.1002/anie.202107811.
- 9L.-L. Liao, L. Song, S.-S. Yan, J.-H. Ye, D.-G. Yu, Trends in Chemistry 2022, 4, 512–527.
- 10
- 10aC. J. I. V. Zeman, S. Kim, F. Zhang, K. S. Schanze, J. Am. Chem. Soc. 2020, 142, 2204–2207;
- 10bI. Ghosh, T. Ghosh, J. I. Bardagi, B. König, Science 2014, 346, 725–728.
- 11M. Neumeier, D. Sampedro, M. Májek, V. A. de la Peña O′Shea, A. Jacobi von Wangelin, R. Pérez-Ruiz, Chem. - Eur. J. 2018, 24, 105–108.
- 12J. I. Bardagi, I. Ghosh, M. Schmalzbauer, T. Ghosh, B. König, Eur. J. Org. Chem. 2018, 2018, 34–40.
- 13
- 13aR. S. Shaikh, S. J. S. Düsel, B. König, ACS Catal. 2016, 6, 8410–8414;
- 13bI. Ghosh, L. Marzo, A. Das, R. Shaikh, B. König, Angew. Chem., Int. Ed. 2016, 55, 7676–7679.
- 14J. P. Cole, D.-F. Chen, M. Kudisch, R. M. Pearson, C.-H. Lim, G. M. Miyake, J. Am. Chem. Soc. 2020, 142, 13573–13581.
- 15A. F. Chmiel, O. P. Williams, C. P. Chernowsky, C. S. Yeung, Z. K. Wickens, J. Am. Chem. Soc. 2021, 143, 10882–10889.
- 16J. Xu, J. Cao, X. Wu, H. Wang, X. Yang, X. Tang, R. W. Toh, R. Zhou, E. K. L. Yeow, J. Wu, J. Am. Chem. Soc. 2021, 143, 13266–13273.
- 17I. A. Mackenzie, L. Wang, N. P. R. Onuska, O. F. Williams, K. Begam, A. M. Moran, B. D. Dunietz, D. A. Nicewicz, Nature 2020, 580, 76–80.
- 18A. Graml, T. Neveselý, R. J. Kutta, R. Cibulka, B. König, Nat. Commun. 2020, 11, 3174.
- 19Other than the reductive ConPET, oxidative ConPET has also been reported:
- 19aD. Rombach, H.-A. Wagenknecht, ChemCatChem 2018, 10, 2955–2961;
- 19bK. Targos, O. Williams, Z. Wickens, J. Am. Chem. Soc. 2021, 143, 4125–4132.
- 20A. J. Rieth, M. I. Gonzalez, B. Kudisch, M. Nava, D. G. Nocera, J. Am. Chem. Soc. 2021, 143, 14352–14359.
- 21C. Herse, D. Bas, F. C. Krebs, T. Bürgi, J. Weber, T. Wesolowski, B. W. Laursen, J. Lacour, Angew. Chem. Int. Ed. 2003, 42, 3162–3166.
- 22B. W. Laursen, F. C. Krebs, Angew. Chem. Int. Ed. 2000, 39, 3432–3434.
10.1002/1521-3773(20001002)39:19<3432::AID-ANIE3432>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 23
- 23aL. Mei, J. M. Veleta, T. L. Gianetti, J. Am. Chem. Soc. 2020, 142, 12056–12061;
- 23bL. Mei, J. Moutet, S. M. Stull, T. L. Gianetti, J. Org. Chem. 2021, 86, 15, 10640–10653.
- 24M. M. Hossain, A. C. Shaikh, R. Kaur, T. L. Gianetti, J. Am. Chem. Soc. 2024, 146, 7922–7930.
- 25A. C. Shaikh, J. Moutet, J. M. Veleta, M. M. Hossain, J. Bloch, A. V. Astashkin, T. L. Gianetti, Chem. Sci. 2020, 11, 11060–11067.
- 26T. J. Sørensen, M. F. Nielsen, B. W. Laursen, ChemPlusChem 2014, 79, 1030–1035.
- 27M. M. Hossain, T. L. Gianetti, Trends in Chemistry 2022, 4, 962–963.
- 28M. M. Hossain, A. C. Shaikh, J. Moutet, T. L. Gianetti, Nature Synthesis 2022, 1, 147–157.
- 29R. J. Enemærke, T. B. Christensen, H. Jensen, K. J. Daasbjerg, Chem. Soc., Perkin Trans. 2 2001, 1620–1630.
- 30
- 30aB. Górski, A.-L. Barthelemy, J. J. Douglas, F. Juliá, D. Leonori, Nat. Catal. 2021, 4, 623–630;
- 30bT. Constantin, M. Zanini, A. Regni, N. S. Sheikh, F. Juliá, D. Leonori, Science 2020, 367, 1021–1026;
- 30cT. Constantin, F. Juliá, N. S. Sheikh, D. Leonori, Chem. Sci. 2020, 11, 12822–12828.
- 31F. Juliá, T. Constantin, D. Leonori, Chem. Rev. 2022, 122, 2292–2352.
- 32
- 32aC. S. Demmer, N. Krogsgaard-Larsen, L. Bunch, Chem. Rev. 2011, 111, 7981–8006;
- 32bP. Guga, Curr. Top. Med. Chem. 2007, 7, 695–713;
- 32cK. Moonen, I. Laureyn, C. V. Stevens, Chem. Rev. 2004, 104, 6177–6216.
- 33J. A. Rossi-Ashton, A. K. Clarke, W. P. Unsworth, R. J. K. Taylor, ACS Catal. 2020, 10, 7250–7261.
- 34H. S. Ban, H. Nakamura, Chem. Rec. 2015, 15, 616.
- 35B. Kretz, P. Wutz, J. Schedlbauer, J. Vogelsang, J. M. Lupton, D. A. Egger, J. Phys. Chem. C 2023, 127, 11666–11671.
- 36B. Pfund, D. Gejsnæs-Schaad, B. Lazarevski, O. S. Wenger, Nat. Commun. 2024, 15, 4738.
- 37D. Y. Jeong, D. S. Lee, H. L. Lee, S. Nah, J. Y. Lee, E. J. Cho, Y. You, ACS Catal. 2022, 12, 6047–6059.
- 38X. Tian, T. A. Karl, S. Reiter, S. Yakubov, R. de Vivie-Riedle, B. König, J. P. Barham, Angew. Chem. Int. Ed. 2021, 60, 20817–20825.
- 39
- 39aD. Conreaux, N. Mehanna, C. Herse, J. Lacour, J. Org. Chem. 2011, 76, 2716–2722;
- 39bJ. Guin, C. Besnard, P. Pattison, J. Lacour, Chem. Sci. 2011, 2, 425–428.
- 40J. Bosson, G. M. Labrador, C. Besnard, D. Jacquemin, J. Lacour, Angew. Chem. Int. Ed. 2021, 60, 8733–8738.
- 41Y. Baek, A. Reinhold, L. Tian, P. D. Jeffrey, G. D. Scholes, R. R. Knowles, J. Am. Chem. Soc. 2023, 145, 12499–12508.
- 42A. Kumar, P. Malevich, L. Mewes, S. Wu, J. P. Barham, J. Hauer, J. Chem. Phys. 2023, 158.
- 43S. J. Horsewill, G. Hierlmeier, Z. Farasat, J. P. Barham, D. J. Scott, ACS Catal. 2023, 13, 9392–9403.
Y. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, 2007.
10.1201/9781420007282 Google Scholar
- 44M. Villa, A. Fermi, F. Calogero, X. Wu, A. Gualandi, P. G. Cozzi, A. Troisi, B. Ventura, P. Ceroni, Chem. Sci. 2024, 15, 14739–14745.
- 45M. Fujitsuka, T. Majima, J. Photochem. Photobiol. C: Photochem. Rev. 2018, 35, 25–37.
- 46D. Gosztola, M. Niemczyk, W. Svec, A. Lukas, M. Wasielewski, J. Phys. Chem. A 2000, 104, 6545–6551.
- 47L. Pan, M. V. Cooke, A. Spencer, S. Laulhé, Adv. Synth. Catal. 2022, 364, 420–425.
- 48D. C. Grills, S. V. Lymar, J. Phys. Chem. B 2022, 126, 1, 262–269.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.