Excitation-Dependent Circularly Polarized Luminescence Inversion Driven by Dichroic Competition of Achiral Dyes in Cholesteric Liquid Crystals
Dr. Kun Yao
School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, 450007 Henan Province, China
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 Jiangsu Province, China
Search for more papers by this authorZhentan Wang
School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601 Anhui Province, China
Search for more papers by this authorDr. Peng Wang
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 Jiangsu Province, China
Search for more papers by this authorDr. Yang Li
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 Jiangsu Province, China
Search for more papers by this authorCorresponding Author
Dr. Liangyu Hu
School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601 Anhui Province, China
Search for more papers by this authorCorresponding Author
Prof. Yixiang Cheng
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 Jiangsu Province, China
Search for more papers by this authorCorresponding Author
Dr. Zhongxing Geng
School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601 Anhui Province, China
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 Jiangsu Province, China
Search for more papers by this authorDr. Kun Yao
School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, 450007 Henan Province, China
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 Jiangsu Province, China
Search for more papers by this authorZhentan Wang
School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601 Anhui Province, China
Search for more papers by this authorDr. Peng Wang
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 Jiangsu Province, China
Search for more papers by this authorDr. Yang Li
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 Jiangsu Province, China
Search for more papers by this authorCorresponding Author
Dr. Liangyu Hu
School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601 Anhui Province, China
Search for more papers by this authorCorresponding Author
Prof. Yixiang Cheng
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 Jiangsu Province, China
Search for more papers by this authorCorresponding Author
Dr. Zhongxing Geng
School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601 Anhui Province, China
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 Jiangsu Province, China
Search for more papers by this authorAbstract
The development of stimuli-responsive chiral cholesteric liquid crystals (CLCs) materials holds significant potential for achieving three-dimensional (3D) anti-counterfeiting and multi-level information encryption. However, constructing phototunable CLCs systems with easy fabrication and fast response remains a great challenge. Herein, we exploit an excitation-dependent CLCs (ExD-CLCs) material by establishing dynamically photoresponsive dichroic competition between two achiral dyes: a negative dichroic dye (SP-COOH) and a positive dichroic dye (Nile Red, NR) within a CLCs medium. The ExD-CLCs exhibits a negative circularly polarized luminescence (CPL) signal (glum=−0.16) at 625 nm when excited at 365 nm. Remarkably, under excitation at 430 nm, the CPL signal is inverted, and the glum value increases to +0.26. Notably, the helical superstructure and handedness of the ExD-CLCs remain unchanged during this reversal process. The CPL signal reversal is driven by the dichroic competition between the SP-COOH dimer, which displays strong negative dichroism in its open-ring isomer form and silent negative dichroism in its closed-ring isomer form, and the NR dye, which exhibits static positive dichroism. Leveraging these excitation-dependent CPL properties, the quadruplex numerical anti-counterfeiting using ExD-CLCs is achieved.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420290-sup-0001-misc_information.pdf1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Liu, F. Han, F. Li, Y. Zhao, M. Chen, Z. Xu, X. Zheng, H. Hu, J. Yao, T. Guo, W. Lin, Y. Zheng, B. You, P. Liu, Y. Li, L. Qian, Nat. Commun. 2019, 10, 2409;
- 1bY. Zheng, C. Jiang, S. H. Ng, Y. Lu, F. Han, U. Bach, J. J. Gooding, Adv. Mater. 2016, 28, 2330–2336;
- 1cX. Chen, H. K. Bisoyi, X. F. Chen, X. M. Chen, S. Zhang, Y. Tang, G. Zhu, H. Yang, Q. Li, Matter 2022, 5, 3883–3900.
- 2
- 2aY. Sang, J. Han, T. Zhao, P. Duan, M. Liu, Adv. Mater. 2020, 32, 1900110;
- 2bH. K. Bisoyi, Q. Li, Acc. Chem. Res. 2014, 47, 3184;
- 2cL. Zhang, H. X. Wang, S. Li, M. Liu, Chem. Soc. Rev. 2020, 49, 9095–9120;
- 2dL. E. MacKenzie, R. Pal, Nat. Chem. Rev. 2021, 5, 109–124.
- 3
- 3aY. Wu, M. Li, Z. G. Zheng, Z. Q. Yu, W. H. Zhu, J. Am. Chem. Soc. 2023, 145, 12951–12966;
- 3bK. Takaishi, M. Yasui, T. Ema, J. Am. Chem. Soc. 2018, 140, 5334–5338;
- 3cG. Ouyang, J. Rühe, Y. Zhang, M. J. Lin, M. Liu, F. Würthner, Angew. Chem. Int. Ed. 2022, 61, e202206706.
- 4
- 4aC. Li, X. Yang, J. Han, W. Sun, P. Duan, Mater Adv 2021, 2, 3851–3855;
- 4bY. Ai, Y. Fei, Z. Shu, Y. Zhu, J. Liu, Y. Li, Chem. Eng. J. 2022, 450, 138390;
- 4cC. Xue, Y. Jiang, H. X. Wang, C. Du, L. Xu, T. Li, M. Liu, Angew. Chem. Int. Ed. 2022, 61, e202205633;
- 4dZ. Huang, Z. He, B. Ding, H. Tian, X. Ma, Nat. Commun. 2022, 13, 7841.
- 5M. Zheng, Z. B. Jin, Z. Z. Ma, Z. G. Gu, J. Zhang, Adv. Mater. 2024, 36, 2313749.
- 6S. Li, Y. Tang, Q. Fan, Z. Li, X. Zhang, J. Wang, J. Guo, Q. Li, Light-Sci. Appl. 2024, 13, 140.
- 7
- 7aY. He, S. Zhang, H. K. Bisoyi, J. Qiao, H. Chen, J. Guo, J. Guo, Q. Li, Angew. Chem. Int. Ed. 2021, 60, 27158–27163;
- 7bS. Li, J. Wang, M. Tian, X. Meng, J. Wang, J. Guo, Angew. Chem. Int. Ed. 2024, 63, e202405615;
- 7cW. Shen, H. Zhang, Z. Miao, Z. Ye, Adv. Funct. Mater. 2023, 33, 2210664;
- 7dX. Li, W. Hu, Y. Wang, Y. Quan, Y. Cheng, Chem. Commun. 2019, 55, 5179–5182.
- 8
- 8aY. Chen, Y. Li, H. Li, L. Li, Y. Quan, Y. Cheng, Sci. China Chem. 2024, 67, 1250–1255;
- 8bX. Li, Q. Li, Y. Wang, Y. Quan, D. Chen, Y. Cheng, Chem. Eur. J. 2018, 24, 12607–12612;
- 8cK. Yao, Y. Li, Y. Shen, Y. Quan, Y. Cheng, J. Mater. Chem. C 2021, 9, 12590–12595;
- 8dP. Lu, Y. Chen, Z. Chen, Y. Yuan, H. Zhang, J. Mater. Chem. C 2019, 9, 6589–6596;
- 8eL. Chen, J. Yuan, X. He, F. Zheng, X. Lu, S. Xiang, Q. Lu, Small Methods 2024, 8, 2301517.
- 9
- 9aJ. Luo, Y. Li, H. Li, Q. Li, Y. Cheng, ACS Materials Lett. 2024, 6, 2957;
- 9bJ. He, M. Hara, R. Ohnuki, S. Yoshioka, T. Ikai, Y. Takeoka, ACS Appl. Mater. Interfaces 2024, 16, 43991–44003.
- 10
- 10aQ. Guo, M. Zhang, Z. Tong, S. Zhao, Y. Zhou, Y. Wang, S. Jin, J. Zhang, H. B. Yao, M. Zhu, T. Zhuang, J. Am. Chem. Soc. 2023, 145, 4246–4253;
- 10bY. Zhou, Y. Wang, Y. Song, S. Zhao, M. Zhang, G. Li, Q. Guo, Z. Tong, Z. Li, S. Jin, H. B. Yao, M. Zhu, T. Zhuang, Nat. Commun. 2024, 15, 251;
- 10cX. Wang, K. Yang, B. Zhao, J. Deng, Small 2024, 2404576;
- 10dY. Ru, L. Sui, H. Song, X. Liu, Z. Tang, S. Q. Zang, B. Yang, S. Lu, Angew. Chem. Int. Ed. 2021, 60, 14091–14099.
- 11
- 11aX. X. Yang, N. Li, C. Li, Z. B. Jin, Z. Z. Ma, Z. G. Gu, J. Zhang, J. Am. Chem. Soc. 2024, 146, 16213–16221;
- 11bJ. Hou, R. Toyouda, S. C. J. Meskers, B. L. Feringa, Angew. Chem. Int. Ed. 2022, 61, e202206310;
- 11cY. Chen, P. Lu, Z. Li, Y. Yuan, Q. Ye, H. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 56604–56614;
- 11dX. Wang, B. Zhao, J. Deng, Adv. Mater. 2023, 35, 2304405.
- 12
- 12aY. Wu, M. Li, Z. Zheng, Z. Q. Yu, W. H. Zhu, J. Am. Chem. Soc. 2023, 145, 12951–12966;
- 12bZ. Li, R. Lan, J. Bao, W. Hu, M. Wang, L. Zhang, H. Yang, ACS Appl. Mater. Interfaces 2022, 14, 8490–8498;
- 12cY. Liu, P. Xing, Adv. Mater. 2023, 35, 2300968;
- 12dC. Ren, T. Zhao, Y. Shi, P. Duan, Chem. Commun. 2023, 59, 567–570;
- 12eJ. Yan, F. Ota, B. A. San Jose, K. Akagi, Adv. Funct. Mater. 2017, 27, 1604529.
- 13
- 13aY. He, S. Lin, J. Guo, Q. Li, Aggregate 2021, 2, e141;
- 13bA. Juan, H. Sun, J. Qiao, J. Guo, Chem. Commun. 2020, 56, 13649–13652;
- 13cJ. Qiao, S. Lin, J. Li, J. Tian, J. Guo, Chem. Commun. 2019, 55, 14590–14593;
- 13dJ. Wang, Y. He, S. Li, Q. Fan, J. Guo, J. Mater. Chem. C 2023, 11, 13067–13073.
- 14X. Yang, X. Jin, T. Zhao, P. Duan, Mater. Chem. Front. 2021, 5, 4821–4832.
- 15
- 15aQ. Li, B. Xu, Z. Chen, J. Han, L. Tan, Z. Luo, P. Shen, Z. Quan, Adv. Funct. Mater. 2021, 31, 2104923;
- 15bQ. Sun, S. Wang, C. Zhao, J. Leng, W. Tian, S. Jin, J. Am. Chem. Soc. 2019, 141, 20089–20096;
- 15cR. Huang, C. Wang, D. Tan, K. Wang, B. Zou, Y. Shao, T. Liu, H. Peng, X. Liu, Y. Fang, Angew. Chem. Int. Ed. 2022, 61, e202211106;
- 15dY. Shen, Z. An, H. Liu, B. Yang, Y. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202214483.
- 16W. Hao, Y. Wang, M. Liu, ACS Materials Lett. 2024, 6, 3487–3495.
- 17
- 17aL. Pan, S. Sun, A. Zhang, K. Jiang, L. Zhang, C. Dong, Q. Shao, A. Wu, H. Lin, Adv. Mater. 2015, 27, 7782–7787;
- 17bJ. Guo, C. Yang, Y. Zhao, Acc. Chem. Res. 2022, 55, 1160–1170;
- 17cH. Zhang, B. Z. Tang, JACS Au 2021, 1, 1805–1814;
- 17dY. Zhao, J. Long, P. Zhuang, Y. Ji, C. He, H. Wang, J. Mater. Chem. C 2022, 10, 1010–1016.
- 18
- 18aC. Li, A. Iscen, L. C. Palmer, G. C. Schatz, S. I. Stupp, J. Am. Chem. Soc. 2020, 142, 8447–8453;
- 18bA. Meeks, M. M. Lerch, T. B. H. Schroeder, A. Shastri, J. Aizenberg, J. Am. Chem. Soc. 2022, 144(1), 219–227;
- 18cD. Han, T. Jiao, Langmuir 2022, 38, 13668–13673;
- 18dL. Kortekaas, W. R. Browne, Chem. Soc. Rev. 2019, 48, 3406–3424.
- 19
- 19aY. Chen, Y. Zhang, H. Li, Y, Li, W. Zheng, Y. Quan, Y. Cheng, Adv. Mater. 2022, 34, 2202309;
- 19bY. Li, Y. Chen, H. Li, C. Liu, L. Li, Y. Quan, Y. Cheng, Angew. Chem. Int. Ed. 2023, 62, e202312159;
- 19cY. Li, Y. Chen, J. Luo, Y. Quan, Y. Cheng, Adv. Mater. 2024, 36, 2312331;
- 19dK. Yao, A. Luo, W. Geng, L. Li, Z. Geng, Dyes Pigm. 2024, 222, 111911.
- 20M. T. Sims, L. C. Abbott, S. J. Cowing, J. W. Goodby, J. N. Moore, Phys. Chem. Chem. Phys. 2017, 18, 813–827.
- 21
- 21aY. Xu, Y. Zhao, H. Zhu, Y. Li, H. Gong, B. Lv, N. Luo, B. Zhao, W. Qiao, Z. Y. Wang, J. Phys. Chem. Lett. 2024, 15, 9010–9015;
- 21bV. Doan, R. Köppe, P. H. Kasai, J. Am. Chem. Soc. 1997, 119, 9810–9815;
- 21cQ. Gu, Y. Xia, S. Chen, P. Su, Z. Yang, C. O. Trindle, J. L. Knee, Phys. Chem. Chem. Phys. 2018, 20, 29601–29609.
- 22V. Jirón, E. Castellón, J. Phys. Chem. B 2020, 124, 890–899.
- 23K. A. E. Meyer, A. Nejad, Phys. Chem. Chem. Phys. 2021, 23, 17208–17223.
- 24
- 24aM. A. Iramain, P. G. Cataldo, K. A. Guzzetti, M. V. Castillo, M. E. Manzur, E. Romano, S. A. Brandán, J. Mol. Liq. 2024, 409, 125527;
- 24bS. Emamian, T. Lu, H. Kruse, H. Emamian, J. Comput. Chem. 2019, 40, 2868–2881.
- 25K. Akagi, Chem. Rev. 2009, 109, 5354–5401.
- 26Z. Wu, Q. Wang, P. Li, B. Fang, M. Yin, J. Mater. Chem. C 2021, 9, 6290–6296.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.