Spiro-Carbon-Locking and Sulfur-Embedding Strategy for Constructing Deep-Red Organic Electroluminescent Emitter with High Efficiency
Yexuan Pu
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorXinliang Cai
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorYupei Qu
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorWeibo Cui
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorLinjie Li
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Chenglong Li
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Yuewei Zhang
Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yue Wang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Jihua Laboratory, 28 Huandao South Road, Foshan, 528200, Guangdong Province P. R. China
Search for more papers by this authorYexuan Pu
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorXinliang Cai
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorYupei Qu
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorWeibo Cui
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorLinjie Li
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Chenglong Li
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Yuewei Zhang
Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yue Wang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Jihua Laboratory, 28 Huandao South Road, Foshan, 528200, Guangdong Province P. R. China
Search for more papers by this authorAbstract
The discovery of multiple resonance thermally activated delayed fluorescence (MR-TADF) materials with remarkable narrowband emission has opened a new avenue for the development of organic light-emitting diodes (OLEDs) with high color purity. However, the lack of construction strategies for purely red MR-TADF materials significantly impedes their application in full-color high-definition displays. Herein, we propose a unique and handy approach of spiro-carbon-locking and sulfur-embedding strategy to modify the parent MR-TADF framework, resulting in a red MR-TADF emitter with high color purity. The reported MR-TADF molecule (namely, FSBN) demonstrates a pure red emission with an emission maximum of 621 nm in toluene solution. The OLED with FSBN as emitter exhibits Commission Internationale de l’Éclairage (CIE) coordinates of (0.67, 0.33), which exactly matches the red standard defined by the National Television Standards Committee (NTSC). Importantly, the single-host OLED achieves a high power efficiency (PE) of up to 50.1 lm W−1, suggesting the potential for the development of low power consumption red OLEDs.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420253-sup-0001-misc_information.pdf3.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913–915;
- 1bP. Pust, P. J. Schmidt, W. Schnick, Nat. Mater. 2015, 14, 454–458;
- 1cX. Yang, L. Ding, J. Semicond. 2021, 42, 090201.
- 2T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. P. Ni, Y. Ono, T. Ikuta, Adv. Mater. 2016, 28, 2777–2781.
- 3M. Mamada, M. Hayakawa, J. Ochi, T. Hatakeyama, Chem. Soc. Rev. 2024, 53, 1624–1692.
- 4
- 4aJ. Park, K. J. Kim, J. Lim, T. Kim, J. Y. Lee, Adv. Mater. 2022, 34, 2108581;
- 4bZ. P. Yan, L. Yuan, Y. Zhang, M. X. Mao, X. J. Liao, H. X. Ni, Z. H. Wang, Z. F. An, Y. X. Zheng, J. L. Zuo, Adv. Mater. 2022, 34, 2204253;
- 4cI. S. Park, H. Min, T. Yasuda, Angew. Chem. Int. Ed. 2022, 61, e202205684;
- 4dB. W. Lei, Z. M. Huang, S. T. Li, J. J. Liu, Z. Y. Bin, J. S. You, Angew. Chem. Int. Ed. 2023, 62, e202218405;
- 4eQ. Y. Wang, Y. C. Xu, T. T. Huang, Y. P. Qu, J. A. Xue, B. Y. Liang, Y. Wang, Angew. Chem. Int. Ed. 2023, 62, e202301930;
- 4fS. Wu, L. Zhang, J. X. Wang, A. K. Gupta, I. D. W. Samuel, E. Zysman-Colman, Angew. Chem. Int. Ed. 2023, 62, e202305182;
- 4gZ. G. Wu, Y. Y. Xin, C. W. Lu, W. C. Huang, H. J. Xu, X. Liang, X. D. Cao, C. Li, D. D. Zhang, Y. W. Zhang, L. Duan, Angew. Chem. Int. Ed. 2024, 63, e202318742;
- 4hZ. Y. Huang, H. H. Xie, J. S. Miao, Y. X. Wei, Y. Zou, T. Hua, X. S. Cao, C. L. Yang, J. Am. Chem. Soc. 2023, 145, 12550–12560;
- 4iJ. Y. Liu, Y. H. Zhu, T. J. Tsuboi, C. Deng, W. W. Lou, D. Wang, T. G. Liu, Q. S. Zhang, Nat. Commun. 2022, 13, 4876;
- 4jY. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama, Nat. Photonics 2019, 13, 678–682;
- 4kX. C. Fan, K. Wang, Y. Z. Shi, Y. C. Cheng, Y. T. Lee, J. Yu, X. K. Chen, C. Adachi, X. H. Zhang, Nat. Photonics 2023, 17, 280–285;
- 4lX. Wang, L. Wang, G. Meng, X. Zeng, D. Zhang, L. Duan, Sci. Adv. 2023, 9, eadh1434.
- 5
- 5aP. Keerthika, R. K. Konidena, Adv. Opt. Mater. 2023, 11, 2301732;
- 5bH.-Z. Li, F.-M. Xie, Y.-Q. Li, J.-X. Tang, J. Mater. Chem. C 2023, 11, 6471–6511.
- 6
- 6aY. Zhang, D. Zhang, T. Huang, A. J. Gillett, Y. Liu, D. Hu, L. Cui, Z. Bin, G. Li, J. Wei, L. Duan, Angew. Chem. Int. Ed. 2021, 60, 20498–20503;
- 6bY. Zou, J. Hu, M. Yu, J. Miao, Z. Xie, Y. Qiu, X. Cao, C. Yang, Adv. Mater. 2022, 34, 2201442;
- 6cT. Fan, M. Du, X. Jia, L. Wang, Z. Yin, Y. Shu, Y. Zhang, J. Wei, D. Zhang, L. Duan, Adv. Mater. 2023, 35, 2301018;
- 6dM. Yang, I. S. Park, T. Yasuda, J. Am. Chem. Soc. 2020, 142, 19468–19472;
- 6eY. Wang, K. Zhang, F. Chen, X. Wang, Q. Yang, S. Wang, S. Shao, L. Wang, Chin. J. Chem. 2022, 40, 2671–2677;
- 6fY. Zou, J. He, N. Li, Y. Hu, S. Luo, X. Cao, C. Yang, Mater. Horiz. 2023, 10, 3712–3718.
- 7
- 7aH. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi, Nat. Commun. 2014, 5, 4016;
- 7bC. Yin, Y. Zhang, T. Huang, Z. Liu, L. Duan, D. Zhang, Sci. Adv. 2022, 8, eabp9203.
- 8
- 8aY. Zhang, D. Zhang, J. Wei, Z. Liu, Y. Lu, L. Duan, Angew. Chem. Int. Ed. 2019, 58, 16912–16917;
- 8bY. Xu, Z. Cheng, Z. Li, B. Liang, J. Wang, J. Wei, Z. Zhang, Y. Wang, Adv. Opt. Mater. 2020, 8, 1902142.
- 9
- 9aY. Xu, C. Li, Z. Li, Q. Wang, X. Cai, J. Wei, Y. Wang, Angew. Chem. Int. Ed. 2020, 59, 17442–17446;
- 9bY. Xu, Q. Wang, X. Cai, C. Li, S. Jiang, Y. Wang, Angew. Chem. Int. Ed. 2023, 62, e202312451.
- 10Z. Liu, T. Lu, Q. Chen, Carbon 2020, 165, 468–475.
- 11M. Sima Abdollahi, E. Nemati-Kande, A. Poursattar Marjani, ChemistrySelect 2020, 5, 3971–3980.
- 12
- 12aZ. Ye, H. Wu, Y. Xu, T. Hua, G. Chen, Z. Chen, X. Yin, M. Huang, K. Xu, X. Song, Z. Huang, X. Lv, J. Miao, X. Cao, C. Yang, Adv. Mater. 2024, 36, e230831;
- 12bL. Xing, J. Wang, W. C. Chen, B. Liu, G. Chen, X. Wang, J. H. Tan, S. S. Chen, J. X. Chen, S. Ji, Z. Zhao, M. C. Tang, Y. Huo, Nat. Commun. 2024, 15, 6175;
- 12cK. Chen, X. Chen, K. Hu, Y. Zhao, Y. Liu, G. Liu, J. Chen, W. Jiang, Z. Shuai, D.-H. Qu, Z. Wang, Sci. China Chem. 2024, 67, 1324–1333.
- 13
- 13aM. Nagata, H. Min, E. Watanabe, H. Fukumoto, Y. Mizuhata, N. Tokitoh, T. Agou, T. Yasuda, Angew. Chem. Int. Ed. 2021, 60, 20280–20285;
- 13bY. X. Hu, J. Miao, T. Hua, Z. Huang, Y. Qi, Y. Zou, Y. Qiu, H. Xia, H. Liu, X. Cao, C. Yang, Nat. Photonics 2022, 16, 803–810;
- 13cX. F. Luo, S. Q. Song, X. Wu, C. F. Yip, S. Cai, Y. X. Zheng, Aggregate 2023, 5, e445.
- 14
- 14aJ.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 2004, 104, 4971–5004;
- 14bM. K. Etherington, J. Gibson, H. F. Higginbotham, T. J. Penfold, A. P. Monkman, Nat. Commun. 2016, 7, 13680.
- 15Deposition Number 2352557 (for FSBN) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 16
- 16aX. Cai, J. Xue, C. Li, B. Liang, A. Ying, Y. Tan, S. Gong, Y. Wang, Angew. Chem. Int. Ed. 2022, 61, e202200337;
- 16bT. Kim, S. Sohn, S. Park, W. Choi, H. Ahn, S. Jung, T. Park, Chem. Eng. J. 2023, 478, 147444.
- 17
- 17aD. K. A. Phan Huu, S. Saseendran, R. Dhali, L. G. Franca, K. Stavrou, A. Monkman, A. Painelli, J. Am. Chem. Soc. 2022, 144, 15211–15222;
- 17bM. Urban, P. H. Marek-Urban, K. Durka, S. Lulinski, P. Pander, A. P. Monkman, Angew. Chem. Int. Ed. 2023, 62, e202217530.
- 18
- 18aA. Pershin, D. Hall, V. Lemaur, J. C. Sancho-Garcia, L. Muccioli, E. Zysman-Colman, D. Beljonne, Y. Olivier, Nat. Commun. 2019, 10, 597;
- 18bE. Zysman-Colman, Nat. Photonics 2020, 14, 593–594.
- 19X. Lv, R. Huang, S. Sun, Q. Zhang, S. Xiang, S. Ye, P. Leng, F. B. Dias, L. Wang, ACS Appl. Mater. Interfaces 2019, 11, 10758–10767.
- 20
- 20aY. Huang, E. L. Hsiang, M. Y. Deng, S. T. Wu, Light-Sci. Appl. 2020, 9, 105;
- 20bY. Wang, H. Nie, J. Han, Y. An, Y. M. Zhang, S. X. Zhang, Light-Sci. Appl. 2021, 10, 33.
- 21H. Wang, H. Zhao, C. Zang, S. Liu, L. Zhang, W. Xie, J. Mater. Chem. C 2020, 8, 3800–3806.
- 22C.-Y. Chan, M. Tanaka, Y.-T. Lee, Y.-W. Wong, H. Nakanotani, T. Hatakeyama, C. Adachi, Nat. Photonics 2021, 15, 203–207.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.