Polymer Ligands with Multi-Nitrogen Heterocyclic Carbenes for Enhanced Stability and Reactivity in Nanoparticle Surface Functionalization
Jing Tao
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorDi Zheng
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorYutian Tang
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorDr. Huibin He
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorDr. Yan Zhang
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorDr. Yanqiong Yang
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorDr. Liwei Dai
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorHuaining Zha
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Yutao Sang
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Zhihong Nie
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorJing Tao
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorDi Zheng
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorYutian Tang
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorDr. Huibin He
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorDr. Yan Zhang
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorDr. Yanqiong Yang
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorDr. Liwei Dai
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorHuaining Zha
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Yutao Sang
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Zhihong Nie
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438 People's Republic of China
Search for more papers by this authorAbstract
Nitrogen heterocyclic carbenes (NHCs) are emerging as effective substitutes for conventional thiol ligands in surface functionalization of nanoparticles (NPs), offering exceptional stability to NPs under harsh conditions. However, the highly reactive feature of NHCs limits their use in introducing chemically active groups onto the NP surface. Herein, we develop a general yet robust strategy for the efficient surface functionalization of NPs with copolymer ligands bearing various functional groups. The polymer ligands consist of a multiple NHCs block, utilized for surface binding on NPs, alongside a poly(reactive ester) block intended for incorporating functional groups. The multiple NHCs block enables NPs with excellent colloidal stability across a broader range of pH values (0–14), temperature variations (–78 °C-100 °C), and electrolyte concentrations (0–1000 mM). Through the in situ ammonolysis of the poly(reactive ester) block, various active functional groups can be individually or together introduced on the NP surface. We further demonstrate the chemical reactivity of these functionalized NPs, including addition polymerization, Diels–Alder and Schiff base reactions. This method is applicable to various types of NPs, including metal NPs, metal oxide NPs, and even upconversion NPs, thereby paving new pathways for the design and creation of nanoparticle-based functional materials.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202419640-sup-0001-misc_information.pdf2.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. Lin, M. Zhang, Acc. Chem. Res. 2023, 56, 1578–1590;
- 1bA. Heuer-Jungemann, N. Feliu, I. Bakaimi, M. Hamaly, A. Alkilany, I. Chakraborty, A. Masood, M. F. Casula, A. Kostopoulou, E. Oh, K. Susumu, M. H. Stewart, I. L. Medintz, E. Stratakis, W. J. Parak, A. G. Kanaras, Chem. Rev. 2019, 119, 4819–4880.
- 2
- 2aR. Shenhar, T. B. Norsten, V. M. Rotello, Adv. Mater. 2005, 17, 657–669;
- 2bJ. Gao, X. Huang, H. Liu, F. Zan, J. Ren, Langmuir 2012, 28, 4464–4471.
- 3
- 3aR. M. Choueiri, E. Galati, H. Thérien-Aubin, A. Klinkova, E. M. Larin, A. Querejeta-Fernández, L. Han, H. L. Xin, O. Gang, E. B. Zhulina, M. Rubinstein, E. Kumacheva, Nature 2016, 538, 79–83;
- 3bA. Sanchez-Iglesias, N. Claes, D. M. Solis, J. M. Taboada, S. Bals, L. M. Liz-Marzan, M. Grzelczak, Angew. Chem. Int. Ed. 2018, 57, 3183–3186.
- 4
- 4aD. J. Kim, S. M. Kang, B. Kong, W. J. Kim, H. j. Paik, H. Choi, I. S. Choi, Macromol. Chem. Phys. 2005, 206, 1941–1946;
- 4bW. Li, I. Kanyo, C.-H. Kuo, S. Thanneeru, J. He, Nanoscale 2015, 7, 956–964;
- 4cH. He, X. Shen, C. Yao, J. Tao, W. Chen, Z. Nie, Y. Wu, L. Dai, Y. Sang, Angew. Chem. Int. Ed. 2024, e202401828.
- 5T. Liu, B. Thierry, Langmuir 2012, 28, 15634–15642.
- 6Y. Chen, Z. Wang, Y. W. Harn, S. Pan, Z. Li, S. Lin, J. Peng, G. Zhang, Z. Lin, Angew. Chem. Int. Ed. 2019, 58, 11910–11917.
- 7C.-C. You, O. R. Miranda, B. Gider, P. S. Ghosh, I.-B. Kim, B. Erdogan, S. A. Krovi, U. H. F. Bunz, V. M. Rotello, Nat. Nanotechnol. 2007, 2, 318–323.
- 8
- 8aC. Yi, Y. Yang, B. Liu, J. He, Z. Nie, Chem. Soc. Rev. 2020, 49, 465–508;
- 8bD. Ling, M. J. Hackett, T. Hyeon, Nano Today 2014, 9, 457–477.
- 9D. J. Lavrich, S. M. Wetterer, S. L. Bernasek, G. Scoles, J. Phys. Chem. B 1998, 102, 3456–3465.
- 10Y. Xue, X. Li, H. Li, W. Zhang, Nat. Commun. 2014, 5, 4348.
- 11E. Oh, K. Susumu, A. J. Mäkinen, J. R. Deschamps, A. L. Huston, I. L. Medintz, J. Phys. Chem. C 2013, 117, 18947–18956.
- 12
- 12aM.-T. Lee, C.-C. Hsueh, M. S. Freund, G. S. Ferguson, Langmuir 1998, 14, 6419–6423;
- 12bG. E. Poirier, T. M. Herne, C. C. Miller, M. J. Tarlov, J. Am. Chem. Soc. 1999, 121, 9703–9711.
- 13Y. Yang, C. Yi, X. Duan, Q. Wu, Y. Zhang, J. Tao, W. Dong, Z. Nie, J. Am. Chem. Soc. 2021, 143, 5060–5070.
- 14
- 14aS. Engel, E. C. Fritz, B. J. Ravoo, Chem. Soc. Rev. 2017, 46, 2057–2075;
- 14bM. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485–496.
- 15Z. Wei, M. Kayceety, A. Price, K. Wei, Q. Luo, S. Thanneeru, S. Sun, J. He, ACS Appl. Mater. Interfaces 2022, 14, 55227–55237.
- 16M. J. MacLeod, J. A. Johnson, J. Am. Chem. Soc. 2015, 137, 7974–7977.
- 17A. Ferry, K. Schaepe, P. Tegeder, C. Richter, K. M. Chepiga, B. J. Ravoo, F. Glorius, ACS Catal. 2015, 5, 5414–5420.
- 18L. Du, N. A. Nosratabad, Z. Jin, C. Zhang, S. Wang, B. Chen, H. Mattoussi, J. Am. Chem. Soc. 2021, 143, 1873–1884.
- 19L. Zhang, Z. Wei, M. Meng, G. Ung, J. He, J. Mater. Chem. A 2020, 8, 15900–15908.
- 20
- 20aN. A. Nosratabad, Z. Jin, L. Du, M. Thakur, H. Mattoussi, Chem. Mater. 2021, 33, 921–933;
- 20bN. Arabzadeh Nosratabad, Z. Jin, H. Arabzadeh, B. Chen, C. Huang, H. Mattoussi, Dalton Trans. 2024, 53, 467–483.
- 21M. J. MacLeod, J. A. Johnson, J. Am. Chem. Soc. 2015, 137, 7974–7977.
- 22L. Zhang, Z. Wei, S. Thanneeru, M. Meng, M. Kruzyk, G. Ung, B. Liu, J. He, Angew. Chem. Int. Ed. 2019, 58, 15834–15840.
- 23S. Thanneeru, K. M. Ayers, M. Anuganti, L. Zhang, C. V. Kumar, G. Ung, J. He, J. Mater. Chem. C 2020, 8, 2280–2288.
- 24
- 24aB. Sharma, P. Bugga, L. R. Madison, A.-I. Henry, M. G. Blaber, N. G. Greeneltch, N. Chiang, M. Mrksich, G. C. Schatz, R. P. Van Duyne, J. Am. Chem. Soc. 2016, 138, 13952–13959;
- 24bM. Marin, M. V. Nikolic, J. Vidic, Compr. Rev. Food Sci. F. 2021, 20, 5880–5900.
- 25Y. Zhao, Y. Tian, Y. Cui, W. Liu, W. Ma, X. Jiang, J. Am. Chem. Soc. 2010, 132, 12349–12356.
- 26D. M. Flanigan, F. Romanov-Michailidis, N. A. White, T. Rovis, Chem. Rev. 2015, 115, 9307–9387.
- 27
- 27aN. Mohr, M. Barz, R. Forst, R. Zentel, Macromol. Rapid Commun. 2014, 35, 1522–1527;
- 27bY. Pei, J.-M. Noy, P. J. Roth, A. B. Lowe, J. Polym. Sci. Part A 2015, 53, 2326–2335.
- 28J. Aldana, N. Lavelle, Y. Wang, X. Peng, J. Am. Chem. Soc. 2005, 127, 2496–2504.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.