Copper-Catalysed Electrochemical CO2 Methanation via the Alloying of Single Cobalt Atoms
Jiawei Li
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorMiaojin Wei
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorBifa Ji
Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorSunpei Hu
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorJing Xue
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
Search for more papers by this authorDonghao Zhao
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorHaoyuan Wang
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
Search for more papers by this authorChunxiao Liu
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
Search for more papers by this authorYifan Ye
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorJilong Xu
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorJie Zeng
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorRuquan Ye
Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077 P. R. China
Search for more papers by this authorCorresponding Author
Yongping Zheng
Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 P. R. China
College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorCorresponding Author
Tingting Zheng
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
Search for more papers by this authorCorresponding Author
Chuan Xia
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
Search for more papers by this authorJiawei Li
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorMiaojin Wei
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorBifa Ji
Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorSunpei Hu
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorJing Xue
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
Search for more papers by this authorDonghao Zhao
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorHaoyuan Wang
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
Search for more papers by this authorChunxiao Liu
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
Search for more papers by this authorYifan Ye
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorJilong Xu
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorJie Zeng
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorRuquan Ye
Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077 P. R. China
Search for more papers by this authorCorresponding Author
Yongping Zheng
Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 P. R. China
College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorCorresponding Author
Tingting Zheng
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
Search for more papers by this authorCorresponding Author
Chuan Xia
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
Search for more papers by this authorAbstract
The electrochemical reduction of carbon dioxide (CO2) to methane (CH4) presents a promising solution for mitigating CO2 emissions while producing valuable chemical feedstocks. Although single-atom catalysts have shown potential in selectively converting CO2 to CH4, their limited active sites often hinder the realization of high current densities, posing a selectivity-activity dilemma. In this study, we developed a single-atom cobalt (Co) doped copper catalyst (Co1Cu) that achieved a CH4 Faradaic efficiency exceeding 60 % with a partial current density of −482.7 mA cm−2. Mechanistic investigations revealed that the incorporation of single Co atoms enhances the activation and dissociation of H2O molecules, thereby lowering the energy barrier for the hydrogenation of *CO intermediates. In situ spectroscopic experiments and density functional theory simulations further demonstrated that the modulation of the *CO adsorption configuration, with stronger bridge-binding, favours deep reduction to CH4 over the C−C coupling or CO desorption pathways. Our findings underscore the potential of Co1Cu catalysts in overcoming the selectivity-activity trade-off, paving the way for efficient and scalable CO2-to-CH4 conversion technologies.
Conflict of Interests
A China provisional patent application (CN202410606738.6) based on the technology described in this work was authorized in August 2024 by J.L., J.Xue and J.Z. at the University of Science and Technology of China. The other authors declare no competing interests.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202417008-sup-0001-misc_information.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Zhang, J. Gao, D. Raciti, A. S. Hall, Nature Catalysis 2023, 6, 807–817.
- 2J. Y. T. Kim, P. Zhu, F.-Y. Chen, Z.-Y. Wu, D. A. Cullen, H. Wang, Nature Catalysis 2022, 5, 288–299.
- 3T. Zheng, M. Zhang, L. Wu, S. Guo, X. Liu, J. Zhao, W. Xue, J. Li, C. Liu, X. Li, Q. Jiang, J. Bao, J. Zeng, T. Yu, C. Xia, Nature Catalysis 2022, 5, 388–396.
- 4W. Li, Z. Yin, Z. Gao, G. Wang, Z. Li, F. Wei, X. Wei, H. Peng, X. Hu, L. Xiao, J. Lu, L. Zhuang, Nat. Energy 2022, 7, 835–843.
- 5J. Gu, C.-S. Hsu, L. Bai, H. M. Chen, X. Hu, Science 2019, 364, 1091–1094.
- 6J. Ding, H. Bin Yang, X.-L. Ma, S. Liu, W. Liu, Q. Mao, Y. Huang, J. Li, T. Zhang, B. Liu, Nat. Energy 2023, 8, 1386–1394.
- 7J. Vavra, G. P. L. Ramona, F. Dattila, A. Kormányos, T. Priamushko, P. P. Albertini, A. Loiudice, S. Cherevko, N. Lopéz, R. Buonsanti, Nature Catalysis 2024, 7, 89–97.
- 8T. Zheng, C. Liu, C. Guo, M. Zhang, X. Li, Q. Jiang, W. Xue, H. Li, A. Li, C.-W. Pao, J. Xiao, C. Xia, J. Zeng, Nat. Nanotechnol. 2021, 16, 1386–1393.
- 9M. C. O. Monteiro, F. Dattila, B. Hagedoorn, R. García-Muelas, N. López, M. T. M. Koper, Nature Catalysis 2021, 4, 654–662.
- 10S. Vijay, W. Ju, S. Brückner, S.-C. Tsang, P. Strasser, K. Chan, Nature Catalysis 2021, 4, 1024–1031.
- 11S. Yang, H. An, S. Arnouts, H. Wang, X. Yu, J. de Ruiter, S. Bals, T. Altantzis, B. M. Weckhuysen, W. van der Stam, Nature Catalysis 2023, 6, 796–806.
- 12T. Zhang, J. C. Bui, Z. Li, A. T. Bell, A. Z. Weber, J. Wu, Nature Catalysis 2022, 5, 202–211.
- 13M. Fan, J. E. Huang, R. K. Miao, Y. Mao, P. Ou, F. Li, X.-Y. Li, Y. Cao, Z. Zhang, J. Zhang, Y. Yan, A. Ozden, W. Ni, Y. Wang, Y. Zhao, Z. Chen, B. Khatir, C. P. O'Brien, Y. Xu, Y. C. Xiao, G. I. N. Waterhouse, K. Golovin, Z. Wang, E. H. Sargent, D. Sinton, Nature Catalysis 2023, 6, 763–772.
- 14A. Xu, S.-F. Hung, A. Cao, Z. Wang, N. Karmodak, J. E. Huang, Y. Yan, A. Sedighian Rasouli, A. Ozden, F.-Y. Wu, Z.-Y. Lin, H.-J. Tsai, T.-J. Lee, F. Li, M. Luo, Y. Wang, X. Wang, J. Abed, Z. Wang, D.-H. Nam, Y. C. Li, A. H. Ip, D. Sinton, C. Dong, E. H. Sargent, Nature Catalysis 2022, 5, 1081–1088.
- 15J. Zhu, Y. Zhang, Z. Chen, Z. Zhang, X. Tian, M. Huang, X. Bai, X. Wang, Y. Zhu, H. Jiang, Nat. Commun. 2024, 15, 1565.
- 16P. P. Albertini, M. A. Newton, M. Wang, O. Segura Lecina, P. B. Green, D. C. Stoian, E. Oveisi, A. Loiudice, R. Buonsanti, Nat. Mater. 2024, 23, 680–687.
- 17Y. Dai, H. Li, C. Wang, W. Xue, M. Zhang, D. Zhao, J. Xue, J. Li, L. Luo, C. Liu, X. Li, P. Cui, Q. Jiang, T. Zheng, S. Gu, Y. Zhang, J. Xiao, C. Xia, J. Zeng, Nat. Commun. 2023, 14, 3382.
- 18J. Liu, P. Li, J. Bi, S. Jia, Y. Wang, X. Kang, X. Sun, Q. Zhu, B. Han, J. Am. Chem. Soc. 2023, 145, 23037–23047.
- 19J. Zhao, P. Zhang, T. Yuan, D. Cheng, S. Zhen, H. Gao, T. Wang, Z.-J. Zhao, J. Gong, J. Am. Chem. Soc. 2023, 145, 6622–6627.
- 20Y. Li, A. Xu, Y. Lum, X. Wang, S.-F. Hung, B. Chen, Z. Wang, Y. Xu, F. Li, J. Abed, J. E. Huang, A. S. Rasouli, J. Wicks, L. K. Sagar, T. Peng, A. H. Ip, D. Sinton, H. Jiang, C. Li, E. H. Sargent, Nat. Commun. 2020, 11, 6190.
- 21S. H. Chen, Z. D. Zhang, W. J. Jiang, S. S. Zhang, J. X. Zhu, L. Q. Wang, H. H. Ou, S. Zaman, L. Tan, P. Zhu, E. R. Zhang, P. Jiang, Y. Q. Su, D. S. Wang, Y. D. Li, J. Am. Chem. Soc. 2022, 144, 12807–12815.
- 22C. Xia, X. Wang, C. He, R. Qi, D. Zhu, R. Lu, F.-M. Li, Y. Chen, S. Chen, B. You, T. Yao, W. Guo, F. Song, Z. Wang, B. Y. Xia, J. Am. Chem. Soc. 2024, 146, 20530–20538.
- 23Y. Yang, S. Louisia, S. Yu, J. Jin, I. Roh, C. Chen, M. V. Fonseca Guzman, J. Feijóo, P.-C. Chen, H. Wang, C. J. Pollock, X. Huang, Y.-T. Shao, C. Wang, D. A. Muller, H. D. Abruña, P. Yang, Nature 2023, 614, 262–269.
- 24Y. Xie, P. Ou, X. Wang, Z. Xu, Y. C. Li, Z. Wang, J. E. Huang, J. Wicks, C. McCallum, N. Wang, Y. Wang, T. Chen, B. T. W. Lo, D. Sinton, J. C. Yu, Y. Wang, E. H. Sargent, Nature Catalysis 2022, 5, 564–570.
- 25C. Kim, J. C. Bui, X. Luo, J. K. Cooper, A. Kusoglu, A. Z. Weber, A. T. Bell, Nat. Energy 2021, 6, 1026–1034.
- 26R. Amirbeigiarab, J. Tian, A. Herzog, C. Qiu, A. Bergmann, B. Roldan Cuenya, O. M. Magnussen, Nature Catalysis 2023, 6, 837–846.
- 27G. Shi, Y. Xie, L. Du, X. Fu, X. Chen, W. Xie, T.-B. Lu, M. Yuan, M. Wang, Angew. Chem. Int. Ed. 2022, 61, e202203569.
- 28S. Chen, W.-H. Li, W. Jiang, J. Yang, J. Zhu, L. Wang, H. Ou, Z. Zhuang, M. Chen, X. Sun, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2022, 61, e202114450.
- 29H. Zou, G. Zhao, H. Dai, H. Dong, W. Luo, L. Wang, Z. Lu, Y. Luo, G. Zhang, L. Duan, Angew. Chem. Int. Ed. 2023, 62, e202217220.
- 30Y.-R. Wang, H.-M. Ding, X.-Y. Ma, M. Liu, Y.-L. Yang, Y. Chen, S.-L. Li, Y.-Q. Lan, Angew. Chem. Int. Ed. 2022, 61, e202114648.
- 31Y. Zhang, L.-Z. Dong, S. Li, X. Huang, J.-N. Chang, J.-H. Wang, J. Zhou, S.-L. Li, Y.-Q. Lan, Nat. Commun. 2021, 12, 6390.
- 32Y. R. Wang, M. Liu, G. K. Gao, Y. L. Yang, R. X. Yang, H. M. Ding, Y. Chen, S. L. Li, Y. Q. Lan, Angew. Chem. Int. Ed. 2021, 60, 21952–21958.
- 33H. Xu, D. Rebollar, H. He, L. Chong, Y. Liu, C. Liu, C.-J. Sun, T. Li, J. V. Muntean, R. E. Winans, D.-J. Liu, T. Xu, Nat. Energy 2020, 5, 623–632.
- 34X. Wei, Y. Liu, X. Zhu, S. Bo, L. Xiao, C. Chen, T. T. T. Nga, Y. He, M. Qiu, C. Xie, D. Wang, Q. Liu, F. Dong, C.-L. Dong, X.-Z. Fu, S. Wang, Adv. Mater. 2023, 35, 2300020.
- 35J. Yang, H. Qi, A. Li, X. Liu, X. Yang, S. Zhang, Q. Zhao, Q. Jiang, Y. Su, L. Zhang, J.-F. Li, Z.-Q. Tian, W. Liu, A. Wang, T. Zhang, J. Am. Chem. Soc. 2022, 144, 12062–12071.
- 36W. Ren, X. Tan, J. Qu, S. Li, J. Li, X. Liu, S. P. Ringer, J. M. Cairney, K. Wang, S. C. Smith, C. Zhao, Nat. Commun. 2021, 12, 1449.
- 37S.-F. Hung, A. Xu, X. Wang, F. Li, S.-H. Hsu, Y. Li, J. Wicks, E. G. Cervantes, A. S. Rasouli, Y. C. Li, M. Luo, D.-H. Nam, N. Wang, T. Peng, Y. Yan, G. Lee, E. H. Sargent, Nat. Commun. 2022, 13, 819.
- 38J. Xue, X. Dong, C. Liu, J. Li, Y. Dai, W. Xue, L. Luo, Y. Ji, X. Zhang, X. Li, Q. Jiang, T. Zheng, J. Xiao, C. Xia, Nat. Commun. 2024, 15, 5998.
- 39J. Li, H. Zeng, X. Dong, Y. Ding, S. Hu, R. Zhang, Y. Dai, P. Cui, Z. Xiao, D. Zhao, L. Zhou, T. Zheng, J. Xiao, J. Zeng, C. Xia, Nat. Commun. 2023, 14, 340.
- 40Y.-X. Duan, F.-L. Meng, K.-H. Liu, S.-S. Yi, S.-J. Li, J.-M. Yan, Q. Jiang, Adv. Mater. 2018, 30, 1706194.
- 41X. Zheng, Y. Xue, C. Zhang, Y. Li, CCS Chemistry 2023, 5, 1653–1662.
- 42Z. Li, Y. Yan, S.-M. Xu, H. Zhou, M. Xu, L. Ma, M. Shao, X. Kong, B. Wang, L. Zheng, H. Duan, Nat. Commun. 2022, 13, 147.
- 43K. Ge, H. Shao, E. Raymundo-Piñero, P.-L. Taberna, P. Simon, Nat. Commun. 2024, 15, 1935.
- 44W. Xue, X. Liu, C. Liu, X. Zhang, J. Li, Z. Yang, P. Cui, H.-J. Peng, Q. Jiang, H. Li, P. Xu, T. Zheng, C. Xia, J. Zeng, Nat. Commun. 2023, 14, 2137.
- 45X. Zhou, J. Shan, L. Chen, B. Y. Xia, T. Ling, J. Duan, Y. Jiao, Y. Zheng, S.-Z. Qiao, J. Am. Chem. Soc. 2022, 144, 2079–2084.
- 46X. Tan, K. Sun, Z. Zhuang, B. Hu, Y. Zhang, Q. Liu, C. He, Z. Xu, C. Chen, H. Xiao, C. Chen, J. Am. Chem. Soc. 2023, 145, 8656–8664.
- 47R. Wang, J. Liu, Q. Huang, L. Z. Dong, S. L. Li, Y. Q. Lan, Angew. Chem. Int. Ed. 2021, 60, 19829–19835.
- 48L. Zhang, X.-X. Li, Z.-L. Lang, Y. Liu, J. Liu, L. Yuan, W.-Y. Lu, Y.-S. Xia, L.-Z. Dong, D.-Q. Yuan, Y.-Q. Lan, J. Am. Chem. Soc. 2021, 143, 3808–3816.
- 49Z. Zhu, Y. Zhu, Z. Ren, D. Liu, F. Yue, D. Sheng, P. Shao, X. Huang, X. Feng, A.-X. Yin, J. Xie, B. Wang, J. Am. Chem. Soc. 2024, 146, 1572–1579.
- 50B. Deng, M. Huang, K. Li, X. Zhao, Q. Geng, S. Chen, H. Xie, X. Dong, H. Wang, F. Dong, Angew. Chem. Int. Ed. 2022, 61, e202114080.
- 51Y. Cai, J. Fu, Y. Zhou, Y.-C. Chang, Q. Min, J.-J. Zhu, Y. Lin, W. Zhu, Nat. Commun. 2021, 12, 586.
- 52L. Xiong, X. Zhang, L. Chen, Z. Deng, S. Han, Y. Chen, J. Zhong, H. Sun, Y. Lian, B. Yang, X. Yuan, H. Yu, Y. Liu, X. Yang, J. Guo, M. H. Rümmeli, Y. Jiao, Y. Peng, Adv. Mater. 2021, 33, 2101741.
- 53F. Yu, G. Zhang, M. Shu, H. Wang, Angew. Chem. Int. Ed. 2024, e202416467.
- 54P. Zhao, H. Jiang, H. Shen, S. Yang, R. Gao, Y. Guo, Q. Zhang, H. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202314121.
- 55C. A. Obasanjo, G. Gao, J. Crane, V. Golovanova, F. P. García de Arquer, C.-T. Dinh, Nat. Commun. 2023, 14, 3176.
- 56C. Liu, M. Zhang, J. Li, W. Xue, T. Zheng, C. Xia, J. Zeng, Angew. Chem. Int. Ed. 2022, 61, e202113498.
- 57C. Zhang, Y. Xue, X. Zheng, L. Qi, Y. Li, Mater. Today 2023, 66, 72–83.
- 58C. Zhang, X. Zheng, Y. Gao, C. Xing, S. Chen, Y. Xue, Y. Li, Natl. Sci. Rev. 2024, 11, nwae189.
- 59Z. Chen, C. Wang, X. Zhong, H. Lei, J. Li, Y. Ji, C. Liu, M. Ding, Y. Dai, X. Li, T. Zheng, Q. Jiang, H.-J. Peng, C. Xia, Nano Lett. 2023, 23, 7046–7053.
- 60W. Luo, X. Nie, M. J. Janik, A. Asthagiri, ACS Catal. 2016, 6, 219–229.
- 61W. J. Durand, A. A. Peterson, F. Studt, F. Abild-Pedersen, J. K. Nørskov, Surf. Sci. 2011, 605, 1354–1359.
- 62L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman, F. Mittendorfer, G. Kresse, Nat. Mater. 2010, 9, 741–744.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.